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Abstract—We introduce MYSTICETI-C, the first DAG-based
Byzantine consensus protocol to achieve the lower bounds of
latency of 3 message rounds. Since MYSTICETI-C is built over
DAGs it also achieves high resource efficiency and censorship
resistance. MYSTICETI-C achieves this latency improvement by
avoiding explicit certification of the DAG blocks and by proposing
a novel commit rule such that every block can be committed
without delays, resulting in optimal latency in the steady state
and under crash failures. We further extend MYSTICETI-C
to MYSTICETI-FPC, which incorporates a fast commit path
that achieves even lower latency for transferring assets. Unlike
prior fast commit path protocols, MYSTICETI-FPC minimizes
the number of signatures and messages by weaving the fast
path transactions into the DAG. This frees up resources, which
subsequently result in better performance. We prove the safety
and liveness in a Byzantine context. We evaluate both MYSTICETI
protocols and compare them with state-of-the-art consensus and
fast path protocols to demonstrate their low latency and resource
efficiency, as well as their more graceful degradation under crash
failures. MYSTICETI-C is the first Byzantine consensus protocol
to achieve WAN latency of 0.5s for consensus commit while
simultaneously maintaining state-of-the-art throughput of over
200k TPS. Finally, we report on integrating MYSTICETI-C as
the consensus protocol into the Sui blockchain [67], resulting in
over 4x latency reduction.

I. INTRODUCTION

Several recent blockchains, such as Sui [67], [12], have
adopted consensus protocols based on certified directed acyclic
graphs (DAG) of blocks [25], [55], [56], [34], [30], [70], [52],
[58], [44]. By design, these consensus protocols scale well
in terms of throughput, with a performance of 100k tx/s of
raw transactions and are robust against faults and network
asynchrony [33], [25]. This, however, comes at a high latency
of around 2-3 seconds, which can hinder user experience and
prevent low-latency applications.

MYSTICETI-C: the power of uncertified DAGs Certified
DAGs [34], [25], where each vertex is delivered through
consistent broadcast [14], have high latency for three main
reasons: (1) the certification process requires multiple round-
trips to broadcast each block between validators, get signa-
tures, and re-broadcast certificates. This leads to higher latency
than traditional consensus protocols [31], [64], [15]; (2) blocks
commit on a “per-wave” basis, which means that only once
every two rounds (for Bullshark [55]) there is a chance to
commit. Hence, some blocks have to wait for the wave to
finish increasing the latency of transactions proposed by the
block. This phenomenon is similar to committing big batches
of 2f +1 blocks. Finally, (3) since all certified blocks need to

Fig. 1: P50 latency of a major blockchain switching from Bullshark (1900ms)
to MYSTICETI-C (390ms) consensus on 106 independently run validators

be signed by a supermajority of validators, signature generation
and verification consume a large amount of CPU on each
validator, which grows with the number of validators [42],
[16]. This burden is particularly heavy for a crash-recovered
validator that typically needs to verify thousands of signatures
when trying to catch up with the rest. Although at a first glance,
certification seems to have the benefit that in adversarial cases
nodes can advance the DAG without needing to synchronize
the full-history, production experience of deploying Bullshark
shows that this benefit is negated when needing to execute the
committed transactions. As a result, the certification benefits
only Byzantine Atomic Broadacst protocols but not if used for
the common case of powering a State Machine Replication
system (e.g., a blockchain).

This comes in stark contrast to the early protocols for BFT
consensus, such as PBFT [15], which requires only 3 message
delays to commit a proposal (instead of the 6 in Bullshark)
and facilitates the pipeline of proposals to commit one block
every round [38]. They, however, require a high number of
authenticated messages to coordinate, which consumes a lot
of resources and results in low throughput. Additionally, they
are fragile to faults and implementation mistakes due to their
complexity, especially the view-change sub-protocols.

This work presents MYSTICETI, a family of DAG-based
protocols allowing to safely commit distributed transactions in
a Byzantine setting that focuses on low-latency and low-CPU
operation, achieving the best of both worlds. MYSTICETI-C is
a consensus protocol based on a threshold logical clock [29]
DAG of blocks, that commits every block as early as it can be
decided. MYSTICETI-C solves all of the above challenges as
(1) it is the first safe DAG-based consensus protocol that does
not require explicit certificates, committing blocks within the



known lower bound [45] of 3 message rounds, (2) commits
every block independently and does not need to wait for the
wave to finish, and (3) requires a single signature generation
and verification per block, minimizing the CPU overhead.

From a production readiness point of view, the protocol
tolerates crash failures without any throughput degradation and
minimal latency degradation. It uses a single message type,
the signed block, and a single multi-cast transmission method
between validators, making it easier to understand, implement,
test, and maintain. MYSTICETI-C has been adopted by the
Sui blockchain [67] that switched from the state-of-the-art
Bullshark [55] to MYSTICETI-C. Figure 1 shows the 80%
latency reduction (from 1900ms to 400 ms) that happened at
the moment of the deployment on a 106 validator network.

MYSTICETI-FPC: supporting consensusless transactions
The power of uncertified DAGs is not limited to consen-
sus protocols. This work generalizes MYSTICETI-C to apply
uncertified DAGs to BFT systems that process transactions
without or before reaching consensus, such as in FastPay [8],
Zef [10], Astro [23], and Sui [12]. These systems use reliable
broadcast instead of consensus to commit transactions that only
access state controlled by a single party.

The only operating protocol of this kind is Sui Lutris [12],
which powers the open source Sui blockchain (Linera [66] is
under development). Sui combines a consensusless “fast” path
with a black-box certified DAG consensus. This composition
is generic and leads to low latencies for fast-path transactions.
But it also leads to (1) increased latencies for transactions
requiring the consensus path and overall increased sync la-
tency due to a separate post-consensus checkpoint mechanism,
and (2) additional signature generation and verification for
transaction to be certified separately. The latter means that the
validator’s CPU is largely devoted to performing cryptographic
operations rather than executing transactions. To alleviate these
challenges, we co-design with MYSTICETI-C a fast path-
enabled version called MYSTICETI-FPC, leading to very low-
latency commits without the need to generate an explicit
certificate for each transaction. This new design inherits the
benefits of lower latency and lower CPU utilization.

Contributions We make the following contributions:

• We present MYSTICETI-C, a DAG-based Byzantine con-
sensus algorithm, and its proofs of safety and liveness.
Notably, it implements a commit rule where every single
block can be directly committed, significantly reducing
latency even when failures occur. We show it has a low
commit latency and exceeds the throughput of Narwhal-
based consensus. MYSTICETI-C is already powering the
Sui blockchain [67] with more than $700M of value under
management and 1M Daily Active Accounts.

• We also present MYSTICETI-FPC that offers feature
parity with Sui Lutris [12], that is, both a fast path and a
consensus path, as well as safe checkpointing and epoch
close mechanisms. We show that MYSTICETI-FPC has a
fast path latency comparable with Zef [10] and Fastpay [8]
but higher throughput due to lower CPU utilization and
batching.

• We implement and evaluate both protocols on a wide-
area network. We show their performance is superior
to certified DAG-based designs both in consensus and

consensusless modes due to the need for fewer messages
and lower CPU overheads. We also report the experiences
and performance benefits of integrating MYSTICETI-C
into a production blockchain.

II. OVERVIEW

This paper presents the design of the MYSTICETI pro-
tocols, a pair of Byzantine Fault Tolerant (BFT) proto-
cols based on Directed Acyclic Graphs (DAGs) that aim
to achieve high performance in a partially synchronous net-
work. MYSTICETI-C is a low-latency consensus protocol that
commits multiple blocks per round, while MYSTICETI-FPC
extends MYSTICETI-C with a fast path for transactions that
do not require consensus.

A. System model, goals, and assumptions

We consider a message-passing system where, in each
epoch, n = 3f + 1 validators process transactions using
the MYSTICETI protocols. In every epoch, a computationally
bound adversary can statically corrupt an unknown set of up to
f validators. We call these validators Byzantine and they can
deviate from the protocol arbitrarily. The remaining validators
(at least 2f +1) are honest and follow the protocol faithfully.

For the description of the protocol, we assume that links
between honest parties are reliable and authenticated. That
is, all messages among honest parties eventually arrive and
a receiver can verify the sender’s identity. The adversary is
computationally bound hence the usual security properties
of cryptographic hash functions, digital signatures, and other
cryptographic primitives hold. Under these assumptions, Sec-
tion V shows that the MYSTICETI protocols are safe, in that,
no two correct validators commit inconsistent transactions.

Validators communicate over a partially synchronous net-
work. There exists a time called Global Stabilization Time
(GST) and a finite time bound ∆, such that any message
sent by a party at time x is guaranteed to arrive by time
∆+max{GST, x}. Within periods of synchrony (after GST)
the MYSTICETI protocols are also live in that they are guar-
anteed to commit transactions from correct validators.

Following prior work [34], [55], [25] we focus on
byzantine atomic broadcast for MYSTICETI. Additionally for
MYSTICETI-FPC, we show that the fast-path transactions sub-
protocol satisfies reliable broadcast within an epoch [12], but
allows for recovery of equivocating objects across epochs
without losing safety at the epoch boundaries.

More formally, each validator vk broadcasts messages by
calling r bcastk(m, q), where m is a message and q ∈ N
is a sequence number. Every validator vi has an output
r deliveri(m, q, vk), where m is a message, q is a sequence
number, and vk is the identity of the validator that called the
corresponding r bcastk(m, q). The reliable broadcast abstrac-
tion guarantees the following properties:

• Agreement: If an honest validator vi outputs
r deliveri(m, q, vk), then every other honest validator vj
eventually outputs r deliverj(m, q, vk).

• Integrity: For each sequence number q ∈ N and validator
vk, an honest validator vi outputs r deliveri(m, q, vk) at
most once regardless of m.
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• Validity: If an honest validator vk calls r bcastk(m, q),
then every honest validator vi eventually outputs
r deliveri(m, q, vk).

Additionally, for byzantine atomic broadcast, each hon-
est validator vi can call a bcasti(m, q) and output
a deliveri(m, q, vk). A byzantine atomic broadcast protocol
satisfies reliable broadcast (agreement, integrity, and validity)
as well as:

• Total order: If an honest validator vi outputs
a deliveri(m, q, vk) before a deliveri(m

′, q′, v′k), then
no honest party vj outputs a deliverj(m

′, q′, v′k) before
a deliverj(m, q, vk).

Finally, most prior work on consensusless transactions
defines properties as if the protocol runs in a single epoch. This
setting is unrealistic as it cannot accommodate recovering from
equivocation, which is a common benign event for non-expert
users. To this end, we extend all the protocols to also take as
a parameter the epoch number and all properties should hold
within a single epoch. Fortunately, the definition of reliable
broadcast allows the recovery of liveness for blocked sequence
numbers that are equivocated inside an epoch. Thus, we define
equivocation tolerance for consesusless transactions as follows:

• Equivocation tolerance: If a validator vk concur-
rently called r bcastk(m, q, e) and r bcastk(m′, q, e)
with m ̸= m′ then the rest of the validators either
r deliveri(m, q, vk, e), or r deliveri(m′, q, vk, e), or there
is a subsequent epoch e′ > e where vk is hon-
est, calls r bcastk(m′′, q, e′) and all honest validators
r deliveri(m′′, q, vk, e

′),

B. Intuition behind the MYSTICETI design

MYSTICETI aims to push the latency boundaries of state
machine replication in DAG-based blockchains. Achieving
BFT consensus typically necessitates at least three message de-
lays [15]1. This underscores the inherent latency sub-optimality
of Narwhal [25], that implements consensus (at least 3 message
delays) on certified DAG blocks, when the block certification
itself adds a further 3 message delays. Consequently, the first
design challenge for MYSTICETI is to manage equivocation
and ensure data availability [22], without relying on pre-
certification of individual blocks.

Moreover, even if we overcome this initial challenge,
committing only one block every three messages falls short of
the performance potential inherent in DAG-based consensus,
which thrives on processing O(n) blocks per round, one
per validator, to fully utilize network resources. Therefore, a
key objective for MYSTICETI is to maximize block commit-
ments per round to align system tail latency closely with the
three-message delay. However, achieving this presents a more
formidable challenge. Unlike traditional methods that rely on
the recursive and elegant commit rules found in DAG-based
consensus protocols [34], [25], [55], [30], [70], our approach
cannot afford to require sufficient distance between two po-
tential candidate blocks on the DAG to prevent conflicting

1While some protocols, such as Zyzzyva [39], operate under optimistic
assumptions, they often prove fragile in scenarios of asynchrony or faults [25],
[33]. Moreover, they are unsuitable for the blockchain environment, charac-
terized by a multitude of unreliable nodes wielding a minor fraction of the
total voting power.

decisions among validators with divergent sub-DAG views.
Implementing such protocols would require at least one gap
round, raising the latency to a minimum of four delays.

MYSTICETI is not just a consensus protocol but a class of
protocols facilitating state machine replication. For now, we
only focused on the consensus protocol MYSTICETI-C, but
section IV extends it to protocols for consensusless agreement
with MYSTICETI-FPC. The core contribution of MYSTICETI-
FPC to prior work is that it is co-designed with MYSTICETI-C
instead of being a separate path like in Sui [12]. This allows us
to avoid the need for generating a majority-signed certificate
per transaction, freeing a significant amount of network and
CPU resources to be used for actual transactions instead of
generating and verifying certificates [42], [16].

C. The structure of the MYSTICETI DAG

We present the structure of the MYSTICETI DAG. Its main
goal is to build an uncertified DAG protocol that provides the
same guarantees as a certified DAG.

The MYSTICETI protocols operate in a sequence of logical
rounds. For every round, each honest validator proposes a
unique signed block; Byzantine validators may attempt to
equivocate by sending multiple distinct blocks to different
parties or no block. During a round, validators receive trans-
actions from users and blocks from other validators and use
them as part of their proposed blocks. A block includes
references to blocks from prior rounds, always starting from
their most recent block, alongside fresh transactions not yet
incorporated indirectly in preceding blocks. Once a block
contains references to at least 2f +1 blocks from the previous
round, the validator signs it and sends it to other validators.

Clients submit transactions to a validator, who subsequently
incorporates them into their blocks. In the event that a trans-
action fails to become finalized within a specified time frame,
the client selects an alternative validator for resubmission.

Block correctness A block should include at a minimum (1)
the author A of the block and their signature on the block
contents, (2) a round number r, (3) a list of transactions, and
(4) at least 2f +1 distinct hashes of blocks from the previous
round, along potentially others from all previous rounds. By
convention, the first hash must be to the previous block of A2.
We index each block by the triplet B ≡ (A, r, h), comprised
of the author A, the round r, and the hash h of the block
contents. A block is valid if (1) the signature is valid and A
is part of the validator set, and (2) all hashes point to distinct
valid blocks from previous rounds, the first block links to a
block from A, and within the sequence of past blocks, there
are 2f + 1 blocks from the previous round r − 1.

Identifying DAG patterns We say that a block B′ supports
a past block B ≡ (A, r, h) if, in the depth-first search
performed starting at B′ and recursively following all blocks
in the sequence of blocks hashed, block B is the first block
encountered for validator A at round r. As Figure 2 illustrates,
a block (A3, r+2, ·) (green) may reference blocks (A2, r+1, ·)
and (A3, r + 1, ·) from different validators that respectively
support block (A3, r, Lr) (blue) and the equivocating block

2This rule also helps to guarantee the safety of fast pah transactions upon
epoch change (Section IV-B).
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Fig. 2: Block (A3, r + 2, ·) (green) may reference blocks from different
validators that support both (A3, r, Lr) (blue) and (A3, r, L′

r) (red) equivo-
cating blocks. If any of the blocks gathers 2f +1 support, it will be certified,
and we show that at most one may do so.

(A3, r, L
′
r) (red). At most one of these equivocating blocks

can gather support from 2f + 1 validators.

MYSTICETI-C (Section III) and MYSTICETI-FPC (Sec-
tion IV) operate by interpreting the structure of the DAG to
reach decisions using a single type of message, the block. They
mainly operate by identifying the following two patterns:

1) The skip pattern, illustrated by Figure 3 (left), where at
least 2f + 1 blocks at round r + 1 do not support a
block (A, r, h). Note that there may be multiple or no
proposal for the slot. The skip pattern is identified if for
all proposals, we observe 2f+1 subsequent blocks that do
not support it (or support no proposal).

2) The certificate pattern, illustrated by Figure 3 (right),
where at least 2f + 1 blocks at round r + 1 support a
block B ≡ (A, r, h). We then say that B is certified. Any
subsequent block (illustrated at r+2) that constrains in its
history such a pattern is called a certificate for the block
B.

Using these patterns, we obtain certificates implicitly by
interpreting the DAG, and the certification guarantees are
identical to Narwhal [25]. That is, a certified block (2f + 1
support) is available and no other certified block may exist for
the same spot (A, r). This counter intuitively means that even
if A equivocates and one of its blocks is certified, we process it
as being correct – despite the self evident Byzantine behavior.
This does not constitute a problem as we only commit blocks
that belong to the implicitly certified part of the DAG. We also
note that a skip pattern guarantees that a certificate will never
exist for a block, and thus it will never be part of the implicitly
certified DAG and can be safely skipped.

Liveness intuition Since we are not using randomization, we
need to rely on timeouts for liveness. Although every blocks
has the potential of being committed directly in 3 message
delays we cannot provide liveness for all of them through
timeouts, as this would allow Byzantine validators to slow
down the DAG to the point that every round would move at
the speed of the timeout instead of network speed.

Instead we only provide guaranteed liveness after GST for
one block per round3. We deem this block as the primary
block of the round r and require that validators at r + 1 wait
a timeout for it to arrive before disseminating their blocks.

3This can be extended to more blocks but it increases the chance that the
adversary controls one block causing a full delay for the round.

A0

A1

A2

LrA3

r r+1 r+2

(a) Illustration of skip pattern, blocks
(A0, r+1, ·), (A1, r+1, ·), (A2, r+
1, ·) do not support (A3, r, Lr).

Lr

r

A0

A1

A2

A3

r+1 r+2

(b) Illustration of certificate pattern,
block (A0, r+2, ·) is a certificate for
(A0, r, Lr).

Fig. 3: Illustration of main DAG patterns identified by validators.

Additionally, if the block is in the view of a validator at r+1
we further require the validator to wait another timeout for r+2
or until there are 2f +1 votes for the primary block of r. This
guarantees the existence of a certificate over an honest primary
block after GST and provides liveness for MYSTICETI-C.

III. THE MYSTICETI-C CONSENSUS PROTOCOL

MYSTICETI-C is the first DAG-based consensus protocol
that decides blocks in 3 message delays. It achieves this
through foregoing an explicit certification of the blocks and
through treating every block as a first-class block that can be
proposed and decided directly. Additionally, MYSTICETI-C is
able to instantly identify and exclude crashed validators, the
most frequent failure case in blockchains in the wild.

A. Proposer slots

MYSTICETI-C introduces the concept of proposer slot. A
proposer slot represents a tuple (validator, round) and can
be either empty or contain the validator’s proposal for the
respective round. For instance, in Bullshark [55], there is a
single proposer every two rounds, which results in higher
latencies. Unfortunately, it is not trivial to increase the number
of slots, as the commit rule of Bullshark relies on the fact that
every proposer slot has a link to every other proposer slot,
something that is not possible even if there is a single proposer
per round, let alone n.

We overcome this challenge by introducing multiple states
for each proposer slot, namely: to-commit, to-skip, or unde-
cided. The to-commit state is the equivalent of the decided
state that already exists in the prior work. The most important
state is the undecided, which forces all subsequent proposer
slots to wait, mitigating the risk of non-deterministic com-
mitments due to network asynchrony without the need for a
buffer round as prior work [34], [25], [55], [30]. Finally, the to-
skip state allows to exclude proposer slots assigned to crashed
validators, thus allowing the subsequent slots to commit.

The number of proposer slots instantiated per round can be
configured but for systems with few faults it can be set to n so
that every block has a chance to commit in 3 steps. Initially,
we establish a deterministic total order among all pending
proposer slots, aligning with the round ordering. Within a
single round, the ordering may either remain fixed or change
per round (e.g., round robin). Figure 4 illustrates an example of
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(a) All proposers are initially undecided.
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(b) Direct decision rule: L4d is to-commit.
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(c) Direct decision rule: L4a is to-skip.
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(d) Indirect decision rule: L2c is undecided.
Its anchor (L5a) is undecided, we cannot deter-
mine the status of L2c yet.

L1aA0

L1bA1

L1cA2

L1dA3

L2d

L2a

L2b

L2c

1 4

L3c

L3d

L3b

L4d

L4a

L4b

L4c

L5c

L5d

L5a

L5b

L6b

L6c

L6d

2 3 5 6

anchorcertificate

(e) Indirect decision rule: L1d is to-commit. Its
anchor (L4b) is to-commit and there’s a certified
link from L4b to L1d.
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(f) Indirect decision rule: L1b is to-skip. Its
anchor (L4b) is to-commit and no certified link
(only two links in round 2) from L4b to L1b.

Fig. 4: Example application of the MYSTICETI-C decision rule with four validators (A0, A1, A2, A3) and four proposer slots per round.

a MYSTICETI DAG with four validators, (A0, A1, A2, A3),
four slots per round, and a potential proposer slot ordering
represented as (L1a, L1b, L1c, L1d) and (L2a, L2b, L2c,
L2d) for the first and second rounds, respectively. This order
resembles a FIFO queue, with the first slot at the forefront.

As discussed in Section II-C, validators await the proposal
from the primary validator assigned to the first proposer slot of
round r for up to a predetermined delay ∆ before generating
their own proposal for round r+1. Section V shows that this
delay ensures the liveness of the protocol.

B. The MYSTICETI-C decision rule

This section describes the decision rule of MYSTICETI-
C leveraging an example protocol run. Section III-D provides
detailed algorithms. As illustrated by Figure 4a, all proposer
slots are initially in the undecided state. The end goal of
MYSTICETI-C is to mark all proposer slots as either to-
commit or to-skip by detecting the DAG patterns presented
in Section II-C. The MYSTICETI-C decision rule operates in
three steps:

Step 1: Direct decision rule Starting with the latest proposer
slot (L6d in Figure 4), the validator applies the following direct
decision rule to attempt to determine the status of the slot.
The validator marks a slot as to-commit if it observes 2f +1
commit patterns for that slot, that is, if it accumulates 2f +
1 distinct implicit certificate blocks for it (see Section II-C).
This is the first key design point for lowering the latency as
we certify blocks while constructing the DAG by interpreting
certificate patterns.

Figure 4b illustrates the direct decision rule applied to
L4d, which is marked as to-commit in just 3 messages
due to the presence of 2f + 1 commit patterns. The first

message delay is the proposal block; the second message
delay is the block(s) supporting and voting/certification; and
the third message delay is the block(s) certifying serving as
acknowledgment/commitment. The direct decision rule marks
a slot as to-skip if it observes a skip pattern for that slot. That
is for any proposal for the slot (there may be multiple due to
potential equivocation) it observes 2f + 1 blocks that do not
support it or support no proposal. Figure 4c demonstrates the
direct decision rule applied to L4a, which is marked as to-skip
due to the presence of a skip pattern.

Promptly marking slots as to-skip is the second key design
point that contributes to the reduction of undecided slots
following crash-failures and allows MYSTICETI-C to tolerate
crash-faults virtually for free.

If the direct decision rule fails to mark a slot as either
to-commit or to-skip, the slot remains undecided and the
validator resorts to the indirect decision rule presented in step
2 below. During normal operations, however, we expect the
direct decision rule to succeed and to only resort to the indirect
decision rule during periods of asynchrony or under attacks.

Step 2: Indirect decision rule If the direct decision rule
fails to determine the slot, the validator resorts to the indirect
decision rule to attempt to reach a decision for the slot. This
rule operates in two stages. It initially searches for an anchor,
which is defined as the first slot with the round number
(r′ > r + 2) that is already marked as either undecided or
to-commit4. Figure 4d and Figure 4e respectively illustrate the
anchor of L2c (marked as undecided) and the anchor of L1d
(marked as to-commit).

4This section assumes a fixed distance of 3 rounds between a proposer slot
which is the minimum secure distance. Section III-D generalize this rule to a
variable distance and discusses its tradeoffs.
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If the anchor is marked as undecided the validator marks
the slot as undecided (Figure 4d). Conversely, if the anchor
is marked as to-commit, the validator marks the slot either
as to-commit if the anchor causally references a certificate
pattern over the slot or as to-skip in the absence of a certificate
pattern. Figure 4e illustrates the indirect decision rule applied
to L1d, which is marked as to-commit due to the presence
of a certificate pattern linking L4b to L1d. On the other hand,
Figure 4 demonstrates the indirect decision rule applied to L1b,
which is marked as to-skip due to the absence of a certificate
pattern linking L4b to L1b.

This is the third key design point contributing to the
safety of MYSTICETI-C without the need for links between
proposers. Namely, instead of forcing a direct happened-before
relationship between proposer slots, we take advantage of the
predefined total ordering of proposer slots to ensure that any
decision is recursively carried forward such that no matter the
commit pattern, the commit decisions are deterministic.

Step 3: Commit sequence After processing all slots, the
validator derives an ordered sequence of slots. Subsequently,
the validator iterates over that sequence, committing all slots
marked as to-commit and skipping all slots marked as to-skip.
This iteration continues until the first undecided slot is en-
countered. Section V demonstrates that this commit sequence
is safe and that eventually all slots will be classified as either
to-commit or to-skip. In the example depicted in Figure 4,
the commit sequence is L1a, L1c, L1d, L2a. Appendix A
provides a detailed walkthrough of the decision rule applied
to the example DAG of Figure 4.

This is the final key design point of MYSTICETI-C; unlike
prior work that commits everything the moment a decision
rule exists, MYSTICETI-C applies some backpressure through
undecided slots to preserve safety. This, however, does not
harm performance, as these undecided slots would have not
even existed as possible commit candidates in prior designs.

C. Choosing the number of proposer slots

The example presented by Figure 4 assumes a number of
proposer slots per round equal to the committee size. While
this choice offers the best latency under normal conditions, it
may impact performance during periods of extreme asynchrony
or under Byzantine attack.

In these cases, the probability that the direct decision rule
fails to classify a proposer slot increases when some proposer
slots are slow or equivocate. This forces the validator to resort
to the indirect decision rule more often. As a result, there can
be an increase in the number of undecided slots, which in turn
delays the commit sequence. Figure 4 illustrates this example
through the classification of L2c and L1b as undecided,
preventing the exemplified protocol execution from immedi-
ately committing L2d, L3b, L3c, L3d, L4b, L4c, and L4d,
which would have been possible under ideal conditions. This
is nevertheless an extreme case of the adversary controlling
the network and some validators only to slow down the
system without any actual profit. After a decade of running
blockchains in the wild, this is not something that has been
witnessed, as attackers tend to attack in order to break safety
and not liveness.

Algorithm 1 Helper functions
1: procedure GETPROPOSERBLOCK(w)
2: rproposer ← PROPOSERROUND(w)
3: id← GETPREDEFINEDPROPOSER(rproposer)
4: if ∃b ∈ DAG[rproposer] s.t. b.author = id then return b

5: return ⊥

6: procedure GETFIRSTVOTINGBLOCKS(w)
7: rvoting ← PROPOSERROUND(w) + 1
8: return DAG[rvoting ]

9: procedure GETDECISIONBLOCKS(w)
10: rdecision ← DECISIONROUND(w)
11: return DAG[rdecision]

12: procedure LINK(bold, bnew)
13: return exists a sequence of k ∈ N blocks b1, . . . , bk s.t. b1 =

bold, bk = bnew and ∀j ∈ [2, k] : bj ∈
⋃

r≥1 DAG[r] ∧ bj−1 ∈
bj .parents

14: procedure ISVOTE(bvote, bproposer)
15: function SUPPORTEDBLOCK(b, id, r)
16: if r ≥ b.round then return ⊥
17: for b′ ∈ b.parents do
18: if (b′.author, b′.round) = (id, r) then return b′

19: res← SUPPORTEDBLOCK(b′, id, r)
20: if res ̸=⊥ then return res

21: return ⊥
22: (id, r)← (bproposer.author, bproposer.round)
23: return SUPPORTEDBLOCK(bvote, id, r) = bproposer

24: procedure ISCERT(bcert, bproposer)
25: res← |{b ∈ bcert.parents : ISVOTE(b, bproposer)}|
26: return res ≥ 2f + 1

27: procedure SKIPPEDPROPOSER(w)
28: rproposer ← PROPOSERROUND(w)
29: id← GETPREDEFINEDPROPOSER(rproposer)
30: B ← GETFIRSTVOTINGBLOCKS(w)
31: res← |{b ∈ B s.t. ∀b′ ∈ b.parents : b′.author ̸= id}|
32: return res ≥ 2f + 1

33: procedure SUPPORTEDPROPOSER(w)
34: bproposer ← GETPROPOSERBLOCK(w)
35: B ← GETDECISIONBLOCKS(w)
36: if |{b′ ∈ B : ISCERT(b′, bproposer)}| ≥ 2f + 1 then
37: return bproposer

38: return ⊥

39: procedure CERTIFIEDLINK(banchor, bproposer)
40: w ← WAVENUMBER(bproposer.round)
41: B ← GETDECISIONBLOCKS(w)
42: return ∃b ∈ B s.t. ISCERT(b, bproposer) & LINK(b, banchor)

Nevertheless, in order to mitigate it we use Hammer-
Head [68] in order to select 2f + 1 leaders that are best
performing as candidate leaders. This strikes a good balance
as it does not increase the median latency and only increases
the expected latency by 1

3 of a delay. Section III-D provides
detailed MYSTICETI-C algorithms that allow the number of
proposer slots per round to be configurable.

D. MYSTICETI-C Algorithms

This section presents the detailed algorithms of Sysnamec.
It can be skipped if a high-level understanding is sufficient.

Algorithm 1 provides base utility functions common
to many DAG-based consensus protocols [25], [34], [55].
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Algorithm 2 Direct Decider Algorithm
1: waveLength ▷ Defaults to 3
2: roundOffset
3: proposerOffset

4: procedure TRYDIRECTDECIDE(w)
5: if SKIPPEDPROPOSER(w) then return Skip(w)

6: bproposer ← SUPPORTEDPROPOSER(w)
7: if bproposer ̸=⊥ then return Commit(bproposer)

8: return ⊥

9: procedure WAVENUMBER(r)
10: return (r − roundOffset)/waveLength

11: procedure PROPOSERROUND(w)
12: return w ∗ waveLength+ roundOffset

13: procedure DECISIONROUND(w)
14: return w ∗ waveLength+ waveLength− 1 + roundOffset

15: procedure GETPREDEFINEDPROPOSER(w)
16: rproposer ← PROPOSERROUND(w)
17: return PREDEFINEDPROPOSER(rproposer + ProposerOffset)

Algorithm 3 MYSTICETI-C
1: committeeSize
2: waveLength ▷ Defaults to 3
3: numOfProposers ▷ Set to 2 in Section VII

4: procedure TRYDECIDE(rcommitted, rhighest)
5: sequence← [ ]
6: for r ∈ [rhighest down to rcommitted + 1] do
7: for l ∈ [numOfProposers− 1 down to 0] do
8: i← r % wave_lenght
9: c← DirectDecider(waveLength, i, l)

10: w ← c.WAVENUMBER(r)
11: if c.PROPOSERROUND(w) ̸= r then continue

12: status← c.TRYDIRECTDECIDE(w)
13: if status =⊥ then
14: status← TRYINDIRECTDECIDE(c, w, sequence)

15: sequence← status||sequence
16: decided← [ ]
17: for status ∈ sequence do
18: if status =⊥ then break
19: decided← decided||status
20: return decided

21: procedure TRYINDIRECTDECIDE(c, w, sequence)
22: rdecision ← c.DECISIONROUND(w)
23: anchors← [s ∈ sequence s.t. rdecision < s.round]
24: for a ∈ anchors do
25: if a =⊥ then return ⊥
26: if a = Commit(banchor) then
27: bproposer ← c.GETPROPOSERBLOCK(w)
28: if c.CERTIFIEDLINK(banchor, bproposer) then
29: return Commit(bproposer)
30: else
31: return Skip(w)

32: return ⊥

MYSTICETI-C has one type of message; the block and its
validity rules are described in Section II-C. Every node simply
proposes blocks for every round, and the validity rules make
sure this happens at a beneficial pace.

Algorithm 3 presents the MYSTICETI-C algorithm that is
run every time a valid block is received. MYSTICETI-C is
instantiated with the following parameters:. (1) The committee

size committeeSize. (2) The wavelength wave_lenght,
which the description of Section III assumes to always equal
3. A larger wavelength parameter increases the probability of
observing a certificate pattern (Section II-C) over proposer
slots during periods of asynchrony but increases the median
latency during periods of network synchrony. (3) The number
of proposer slots per round, which the example depicted by
Figure 4 of Section III assumes to equal the committee size.

The entry point of this algorithm is the procedure
TRYDECIDE(·) (Line 4). It operates by instantiating a Di-
rect Decider (Algorithm 2) for each possible proposer
slot in each round that applies the direct decision rule
(Line 9). Each Direct Decider instance is instantiated with
a round offset roundOffset = r and a proposer offset
proposerOffset = l, such that each instance operates over
a unique proposer slot. These instances try to apply the direct
decision rule to their proposer slot by calling the procedure
TRYDIRECTDECIDE(·) (Line 12). If the direct decision rule
fails, Algorithm 3 resorts to the indirect decision rule (Line 14).
The algorithm returns the commit sequence.

IV. THE MYSTICETI-FPC FAST PATH PROTOCOL

For workloads necessitating consensus, the MYSTICETI-
C protocol successfully achieves a low latency bound. How-
ever, popular workloads [49] such as asset transfers, pay-
ments or NFT minting, can be finalized before consensus,
through and even lower latency fast path. This section presents
MYSTICETI-FPC that extends the consensus protocol with
such consensusless transactions. Appendix B provides a deeper
description of MYSTICETI-FPC.

A. Embedding a fast path into the DAG

The real-world deployment of such hybrid blockchains,
exemplified by Sui [12], [67], capitalizes on the insight that
certain objects, like coins, solely access state controlled by
a single party and need not undergo consensus. These objects
can be finalized through a fast path utilizing reliable broadcast.
Such objects are classified as having an owned object type as
opposed to the traditional shared object type. Transactions that
exclusively involve owned objects as inputs are called fast path
transactions. Two transactions conflict if they take as input the
same owned object.

In MYSTICETI-FPC validators include transactions, and
explicitly vote for causally past transactions, in their blocks.
A validator includes a transaction T in its block if it does
not conflict with any other transaction for which the validator
has previously voted. This is also an implicit vote for the
transaction. Other validators, include explicit votes for T in
a block B if: (i) T is present in the causal history of B;
and (ii) T does not conflict with any other already voted on
transaction. In our implementation (Section VI), we denote
the vote for a transaction T appearing in block B at position
i as the tuple (B, i). Once T has 2f + 1 votes from distinct
validators, we call T certified. It is a guarantee that no two
conflicting transaction will be certified in the same epoch. This
is the basis of the fast path safety. Transaction T is finalized
when either (i) there exists 2f + 1 validators supporting a
certificate over T , even before a MYSTICETI-C commit, or
(ii) MYSTICETI-C commits through consensus a block that
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contains a certificate over T in its causal history. Appendix B
presents a detailed protocol description.

In contrast to previous approaches [12], [9], [11], [23],
the fast path in MYSTICETI-FPC is integrated within the
DAG structure itself. This eliminates the need for additional
protocol messages and for validators to individually sign each
fast-path transaction. Instead, a validator’s fast path votes are
embedded within its signed blocks, which are already produced
as part of the consensus protocol. Consequently, in addition to
the block contents of MYSTICETI-C, blocks in MYSTICETI-
FPC also incorporate explicit votes for transactions involving
at least one owned object input. This deep embedding in
the DAG additionally simplifies checkpoints [12] as it does
not require an external sub-protocol to collect all fast-path
transactions that have been finalized. Instead, MYSTICETI-
FPC simply defines checkpoints as the set of finalized fast
path transactions referenced by the causal history of each
MYSTICETI-C commit. These can then be used to make sure
that all validators have the same state for an epoch change.

To summarize, MYSTICETI-FPC offers several advantages
compared to prior work: (i) A reduction in the number of
signature generation and verification operations alleviating
the compute bottleneck. (ii) Elimination of a separate post-
consensus checkpointing mechanism, resulting in reduced syn-
chronization latency, as the consensus commits themselves
serve as checkpoints. (iii) Simplification of the epoch close
mechanism, as we examine next.

B. Epoch change and reconfiguration

As mentioned in Section III, quorum-based blockchains
typically operate in epochs, allowing validators to join and
leave the system at epoch boundaries. Moreover, epoch bound-
aries serve as natural boundaries for protocols with a consen-
susless path to “unlock” transactions that have lost liveness
due to equivocation from the client [12], [37]. This committee
reconfiguration process must uphold a critical safety property:
transactions finalized in an epoch should persist across sub-
sequent epochs. In other words, transactions finalized in the
current epoch should not conflict with transactions committed
in future epochs. This holds trivially for consensus protocols
which is why we omit the epoch change for MYSTICETI-C.

The MYSTICETI-FPC epoch-change protocol The safety of
reconfiguration is ensured by including all finalized transac-
tions from the current epoch into the causal history of the
epoch’s final commit, which also acts as the initial state for
the succeeding epoch. Guaranteeing reconfiguration safety is
straightforward in systems mandating consensus for all trans-
actions, such as MYSTICETI-C, owing to the total ordering
property inherent in consensus. A deterministic consensus
commit C sets the boundary between epochs e and e + 1.
This makes sure that all transactions completed in epoch e are
included in and come before commit C.

However, designing reconfiguration mechanisms for sys-
tems with a consensusless fast path, like MYSTICETI-FPC,
presents non-trivial challenges. There is a race between final-
ized transactions being incorporated into consensus commits
and new transactions being finalized by the fast path. Trivially
closing the epoch may result in the final commit of the epoch

failing to encompass all transactions finalized by the fast path,
thereby violating the safety property of reconfiguration.

To solve this challenge, MYSTICETI-FPC introduces an
overriding bit called the epoch-change bit in all its blocks.
When this bit is set to 1 (default set to 0), it signifies that blocks
referencing these votes do not contribute to the finalization
of fast path transaction, irrespective of its causal history.
Effectively, this epoch-change bit allows for the pause of the
consensusless fast path of MYSTICETI-FPC near the end of
the epoch, mitigating the race condition highlighted above.

Epoch change starts at a predefined commit, often signaled
by a higher-layer logic (e.g., a smart contract) indicating the
readiness of the new committee to take charge. Once an honest
validator detects the commencement of epoch change, it ceases
to include transactions and to cast votes for any fast-path
transactions. Subsequently, it sets the epoch-change bit to 1
in all its future blocks for the current epoch. Furthermore,
while the validator continues to progress through rounds and
participate in consensus, it stop processing and finalizing
fast-path transactions. Upon committing blocks from 2f + 1
validators with the epoch-change bit set via the consensus path,
the epoch is considered closed.

Once the epoch ends, any validator participating the com-
mittee of the next epoch may unlock fast-path transactions that
were blocked due to client equivocations. These transactions
can then receive fresh votes in subsequent epochs.

Security intuition The epoch-change mechanism ensures that
transactions finalized in an epoch (including on the fast path
before consensus) persist across all subsequent epochs, a criti-
cal safety property (more formally in Theorem 5). Informally,
by committing 2f + 1 blocks with the epoch-change bit set,
we guarantee that every transaction finalized via the fast-
path would have a certificate as part of the causal history
of the epoch-change commit (due to a quorum intersection
argument). Consequently, all validators process the certificate
before they end of the epoch and persist execution results
across epochs.

The liveness of MYSTICETI-FPC directly depends on the
liveness of MYSTICETI-C. Informally, if the epoch is long
enough, a non-conflicting transaction will gather sufficient
votes, and then be certified by 2f + 1 blocks with the epoch-
change bit unset. Which in turn ensures that it will be included
in a commit and persisted across epochs. Section C-B formally
proves the safety and liveness of MYSTICETI-FPC.

V. MYSTICETI-C SECURITY

This section argues the safety of MYSTICETI-C under the
Byzantine assumption presented in Section II. Appendix C
argue its integrity and liveness properties as well as the safety
and liveness of MYSTICETI-FPC.

A validator vk broadcasts messages calling a bcastk(b, r),
where b is a block signed by validator vk and r is the
block’s round number, i.e., r = b.round. Every validator
vi has an output a deliveri(b, b.round, vk), where vk is the
author of b and the validator that called the corresponding
a bcastk(b, b.round).
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Lemma 1. If at a round x, 2f + 1 blocks from distinct
authorities certify a block B, then all blocks at future rounds
(> x) will link to a certificate for B from round x.

Proof: Each block links to 2f+1 blocks from the previous
round. For the sake of contradiction, assume that a block in
round r(> x) does not link to a certificate from round x. If r =
x+1, by the standard quorum intersection argument, a correct
validator equivocated in round x, which is a contradiction.
Similarly, if r > x + 1, by the standard quorum intersection
argument, a correct validator’s block in round r − 1 does not
link to its own block in round x, which is also a contradiction.

Lemma 2. If a correct validator commits some block in a slot
s, then no correct validator decides to directly skip the slot s.

Proof: A validator X decides to directly skip a slot s
if there is no support during the support rounds for any block
corresponding to s. If another validator committed some block
b for slot s, at least f + 1 correct validators supported b. By
the quorum intersection argument, X must have observed at
least one validator supporting B, which is a contradiction.

Lemma 3. If a correct validator directly commits some block
in a slot s, then no correct validator decides to skip s.

Proof: For the sake of contradiction, assume that a correct
validator X directly commits block b in slot s while another
correct validator Y decides to skip the slot. Y can decide to
skip the slot s in one of two ways: (a) Y directly skipped s
because there was no support during the support rounds for
any block corresponding to s, or (b) Y skipped s during the
recursive commits triggered by a direct commit of a later slot.

Case (a). Direct contradiction of Lemma 2.

Case (b). Let block b′ denote the proposer block, committed
during the recursive indirect commits, that allowed Y to decide
s as skipped. Due to the commit rule, the round number of
b′ is greater than the decision round of s, and b′ does not
link to a certificate for b. Since X committed b, there are
2f + 1 certificates for b in its decision round, leading to a
contradiction due to Lemma 1.

Lemma 4. For any slot s ≡ (v, r), a correct validator never
supports two distinct block proposals from validator v in round
r across all of its blocks.

Proof: By definition, a block can only support at most
a single proposal for a particular slot s. Block support is
calculated through a depth-first traversal of the referenced
blocks, such that the first block corresponding to s encountered
during the traversal is supported. Since a correct validator
first includes a reference to its own block from the previous
round, once a correct validator supports a certain block for s, it
continues to support the same block in all of its future blocks.

Lemma 5. For any slot, at most a single block will ever be
certified, i.e. gather a quorum (2f + 1) of support.

Proof: For contradiction’s sake, assume that two distinct
block proposals for a slot gather a quorum of support. By
the standard quorum intersection argument, a correct validator

supports two distinct blocks for the same slot, which is a
contradiction of the proved Lemma 4.

As a result of Lemma 5, we get the following corollary:

Corollary 1. No two correct validators commit distinct blocks
for the same slot.

Lemma 6. All correct validators have a consistent state for
each slot, i.e. if two validators have decided the state of a slot,
then both either commit the same block or skip the slot.

Proof: Let [xi]
n
i=0 and [yi]

m
i=0 denote the state of the slots

for two correct validators X and Y , such that n and m are
respectively the indices of the highest committed slot. WLOG
n ≤ m. Any slot decided by X higher than n are direct skips
and are therefore consistent with Y due to Lemma 2. We now
prove, by induction, statement P (i) for 0 ≤ i ≤ n: if X and
Y both decide the slot i, then both either commit the same
block or skip the slot.

Base Case: i = n. X directly commits slot i, the highest
committed slot for X . From Lemma 3, if Y decides slot i,
then it must also commit slot i. By Corollary 1, Y commits
the same block.

Assuming P (i) is true for k + 1 ≤ i ≤ n, we now prove
P (k). Similar to the base case, if one validator decides to
directly commit a block in slot k, then the other validator, if
it also decides slot k, decides to commit the same block. If
one validator decides to directly skip slot k, then the other
validator, if it also decides slot k, decides to skip due to
Lemma 2. We now analyze the only remaining case where
X and Y indirectly decide the slot k. Let k′ denote the first
slot > k with a round number higher than the decision round
of k. There exist slots kx(≥ k′) and ky(≥ k′) such that X
commits block bx in kx while skipping all slots in [k′, kx)] and
Y commits block by in ky while deciding to skip all slots in
[k′, ky)]. As kx ≤ n, it follows from the induction hypothesis
that kx = ky and bx = by = b. Since the indirect decision of
X and Y for slot k depends entirely on the causal history of
the same block b, both validators decide the slot k identically.

Lemma 7. All correct validators commit a consistent sequence
of proposer blocks (i.e., the committed proposer sequence of
one correct validator is a prefix of another’s).

Proof: The committed sequence of proposer blocks is
nothing but the sequence of committed blocks before the first
undecided slot. The statement is then a direct implication of
Lemma 6.

Theorem 1 (Total Order). MYSTICETI-C satisfies the total
order property of Byzantine Atomic Broadcast.

Proof: Correct validators deliver blocks by using an
identical deterministic algorithm to order the causal history
of committed proposer blocks. Since a correct validator has
all the causal histories of a block when the block is added to
its DAG, and the sequence of committed proposer blocks of
one validator is a prefix of another’s (Lemma 7), all correct
validators deliver a consistent sequence of blocks, i.e., the
sequence of blocks delivered from one validator is a prefix
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of the sequence delivered by any other validator. The total
order property of BAB immediately follows.

VI. IMPLEMENTATION

We implement a networked multi-core MYSTICETI valida-
tor in Rust. It uses tokio [60] for asynchronous networking,
utilizing TCP sockets for communication without relying on
any RPC frameworks. For cryptographic operations, we use
ed25519-consensus [26] for asymmetric cryptography
and blake2 [50] for cryptographic hashing. To ensure data
persistence and crash recovery, integrate a Write-Ahead Log
(WAL), seamlessly tailored to our specific requirements. We
have intentionally avoided key-value stores like RocksDB [59]
to eliminate associated overhead and periodic compaction
penalties. Our implementation optimizes I/O operations by
employing vectored writes [27] for efficient multi-buffer writes
in a single syscall. For reading the WAL, we make use of
memory-mapped files while carefully minimizing redundant
data copying and serialization. We use the minibytes [46]
crates to efficiently work with memory-mapped file buffers
without unsafe code.

While all network communications in our implementation
are asynchronous, the core consensus code runs synchronously
in a dedicated thread. This approach facilitates rigorous testing,
mitigates race conditions, and allows for targeted profiling of
this critical code path.

In addition to regular unit tests, we have two supplementary
testing utilities. First, we developed a simulation layer that
replicates the functionality of the tokio runtime and TCP
networking. This simulated network accurately simulates real-
world WAN latencies, while our tokio runtime simulator
employs a discrete event simulation approach to mimic the
passage of time. Utilizing this simulator, we can test a wide
range of scenarios on a single machine and accurately esti-
mate resulting latencies. It’s worth noting that we’ve found
these simulated latencies, such as commit latency, to closely
mirror those observed in real-world cluster testing, provided
that the cross-validator latency distribution in the simulated
network is correctly configured. Second, we created an a
command-line utility (called ‘orchestrator’) designed to deploy
real-world clusters of MYSTICETI with machines distributed
across the globe. The simulator has proven indispensable in
identifying correctness defects, while the orchestrator has been
instrumental in pinpointing performance bottlenecks. We are
open-sourcing our MYSTICETI implementation, along with its
simulator and orchestration utilities5.

VII. EVALUATION

We evaluate the throughput and latency of MYSTICETI
through experiments on Amazon Web Services (AWS). We
show its performance improvements over the state-of-the-art.

Despite the large number of BFT consensus protocols [44],
[52], [19], [21], [70], [30], [56], [58], [43], [18], we opt to com-
pare MYSTICETI-C with vanilla HotStuff [71], HotStuff-over-
Narwhal (called Narwhal-HotStuff ) [25], and Bullshark [55].
We select these protocols for the availability of open-source

5https://github.com/asonnino/mysticeti/tree/paper (commit 96fd831)

implementations and detailed benchmarking scripts, their sim-
ilarity to MYSTICETI, and their adoption in real-world de-
ployments. We specifically select the Jolteon [31] variant of
HotStuff as it has been adopted by Flow [65], Diem [7], Ap-
tos [63], and Monad [47]. We also select the Narwhal-HotStuff
variant as it operates on a structured DAG as MYSTICETI and
is the most performant variant of HotStuff. We finally select
Bullshark as it is a performant DAG-based protocol adopted
by the Sui blockchain [67], [12], Aleo [3], and Fleek [28]. We
evaluate the Narwhal-based systems (that is, Narwhal-HotStuff
and Bullshark) in their default 1 worker configuration. We also
evaluate the fast path MYSTICETI-FPC against Zef [10] (in its
default configuration, with 10 shards), which is the state-of-
the-art fast path protocol that serves as the foundation for the
Linera blockchain [66].

Throughout our evaluation, we particularly aim to demon-
strate the following claims. C1: MYSTICETI-C has higher
throughput and drastically lower latency than the baseline
state-of-the-art protocols. C2: MYSTICETI-C has a similar
throughput to the baseline protocols but maintains sub-second
latencies when operating in the presence of crash faults. C3:
MYSTICETI-FPC maintains the same latency as the baseline
state-of-the-art consensus-less protocol but with drastically
higher throughput.

Note that evaluating the performance of BFT protocols
in the presence of Byzantine faults is an open research
question [6], and state-of-the-art evidence relies on formal
proofs of safety and liveness (which we present in Section V).
While there is a need to robustly tolerate Byzantine faults,
we note that they are rare in observed delegated proof of stake
blockchains, as compared to crash faults that are very common.

A. Experimental setup

We deploy a MYSTICETI testbed on AWS, using
m5d.8xlarge instances across 13 different AWS regions:
N. Virginia (us-east-1), Oregon (us-west-2), Canada (ca-
central-1), Frankfurt (eu-central-1), Ireland (eu-west-1), Lon-
don (eu-west-2), Paris (eu-west-3), Stockholm (eu-north-1),
Mumbai (ap-south-1), Singapore (ap-southeast-1), Sydney (ap-
southeast-2), Tokyo (ap-northeast-1), and Seoul (ap-northeast-
2). Validators are distributed across those regions as equally
as possible. Each machine provides 10Gbps of bandwidth, 32
virtual CPUs (16 physical cores) on a 2.5GHz Intel Xeon
Platinum 8175, 128GB memory, and runs Linux Ubuntu server
22.04. We select these machines because they provide decent
performance, are in the price range of ‘commodity servers’,
and are the same instance types used by our baselines.

MYSTICETI can employ more than one slot per round to
mitigate the performance impact of crash faults and commit
more blocks per round, but if the proposer slot behaves in a
Byzantine manner, it can still manipulate their slot to remain
undecided, resulting in similar latency effects as an unmasked
crash fault. Therefore, we have chosen to have two proposer
slots per round as an effective compromise for our experiments.
To implement the partial synchrony assumption, validators wait
up to 1 second to receive a proposal from the first proposer
slot of the previous round.

In the following graphs, each data point is the average
latency and the error bars represent one standard deviation
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(error bars are sometimes too small to be visible on the graph).
We instantiate several geo-distributed benchmark clients within
each validator submitting transactions at a fixed rate for a du-
ration of several minutes. We experimentally increase the load
of transactions sent to the systems, and record the throughput
and latency of commits. As a result, all plots illustrate the
‘stead state’ latency of all systems under low load, as well
as the maximal throughput they can serve after which latency
grows quickly. Transactions in the benchmarks are arbitrary
and contain 512 bytes. The ping latency between the validators
varies from 50ms to 250ms.

When referring to latency, we mean the time elapsed
from when the client submits the transaction to when the
transaction is committed by the validators. When referring to
throughput, we mean the number of committed transactions
over the duration of the run. Appendix D provides a tutorial
to reproduce our experiments.

B. Benchmark in ideal conditions

Figure 5 illustrates the Latency (seconds) - Throughput
(Transactions per second, TPS) relationship for MYSTICETI-
C compared with other consensus protocols, for a small
deployment of 10 validators and a larger deployment of 50
validators. The systems run in ideal conditions, without faults.

At a steady state of 50k to 400k TPS for both network
sizes MYSTICETI-C exhibits sub-second latency, a factor 2x-
3x lower than the fastest protocols, namely HotStuff, and
Narwhal-HotStuff. Bullshark uses a certified DAG and worker
architecture and is over 3x slower in terms of latency com-
pared with MYSTICETI-C for low system loads. In terms of
throughput, both MYSTICETI-C networks scale extremely well
and achieves a throughput of over 300k-400k TPS before
the latency reaches 1s, that is, well lower than the latency
of state-of-the-art systems. This illustrates that the single-
host throughput efficiency of MYSTICETI-C is higher than
for previous designs. Note that current real-world blockchains
combined6 process fewer than 100M transactions per day,
equivalent to about 1.2k TPS, well within the steady state
low-latency parameter space for MYSTICETI-C, without any
further scaling strategies.

These observations validate our claim C1 showing that
MYSTICETI-C has higher throughput and drastically lower
latency than the baseline state-of-the-art protocols.

Throughout these benchmarks, the the CPU utilization of
the validators remains below 10% and the validators consumes
less than 15GB of memory (when experiencing the highest
load of 400k tx/s).

C. Benchmark with faults

Figure 6 illustrates the performance of HotStuff, Narwhal-
HotStuff, Bullshark, and MYSTICETI-C when a committee
of 10 parties suffers 0 to 3 crash faults (the maximum that
can be tolerated in this setting). HotStuff suffers a massive
degradation in both throughput and latency. With 3 faults,
the throughput of HotStuff drops to a few hundred TPS and
its latency exceeds 15s. Narwhal-HotStuff, Bullshark, and

6Estimates from https://app.artemis.xyz/comparables

MYSTICETI-C maintain a good level of throughput: the under-
lying DAG continues collecting and disseminating transactions
despite the faults. Narwhal-HotStuff and Bullshark can process
about 70k TPS in about 8-10 seconds. In contrast, MYSTICETI-
C can process the same load while maintaining sub-second
latency. This improvement is due to the ability of MYSTICETI
to operate with multiple leaders per round. MYSTICETI-C thus
demonstrates a 15-20x latency improvement compared to the
baseline state-of-the-art protocols.

These observations validate our claim C2 showing that
MYSTICETI-C handles similar throughput to the state-of-the-
art but with sub-second latency despite crash faults.

D. Benchmark of the fast path

Figure 7 illustrates the Latency - Throughput of fast path
commits for MYSTICETI-FPC, compared with Zef [10] when
deployed without privacy protections7. Both systems run in
ideal conditions, without faults. We observe that for low loads
both protocols have a comparable latency of around 0.25s.
However, as the load increases a Zef host has to verify and
produce an increasing number of signatures, proportional to
the throughput times the number of validators. As a result
throughput tops at 20k TPS for a small Zef network and 7K
TPS for a larger network, at a latency of 0.5s. MYSTICETI-
FPC avoids the need for individual signature verification for
each transaction. At a low load, its latency is similar to Zef
at 0.25s. However, as the load increases MYSTICETI-FPC can
process many more messages on a single host, namely 175k
TPS for a small network and 80K for a larger network, at
a latency of less than 0.5s. This is a single host throughput
improvement of 8x-10x compared with Zef. We acknowledge
that the Zef design can scale by adding additional hosts
per validator, and sharding. However, this leads to additional
hardware cost meaning that MYSTICETI-FPC is an order of
magnitude more resource efficient for the same latency.

We thus validate our claim C3 showing that MYSTICETI-
FPC offers the same latency as state-of-the-art consensus-less
protocols but with significantly higher throughput.

VIII. MYSTICETI IN PRODUCTION

We collaborated with the Sui team to integrate
MYSTICETI-C into the Sui blockchain as a replacement
for Bullshark [55], which it used for consensus (Figure 1).

There are a number of reasons Sui is a good fit for using
MYSTICETI-C. First, Sui maintains a fixed committee consen-
sus during each epoch, which does not require MYSTICETI-C
to support unscheduled reconfiguration, allowing for a drop in
replacement of the consensus component. Secondly, Byzantine
behavior in Sui is handled through stake delegation shifts
between epochs. Thus, the priority is to maintain performance
under frequently occurring crash faults, as is the case with
MYSTICETI-C. However, Byzantine faults need to be tolerated,
but it is not critical to maintain extremely high performance
while doing so since they are rare. In the past year, no
Byzantine faults involving equivocation have been observed
on the Sui mainnet.

7Zef can also be instantiated to leverage the Coconut threshold credentials
system [53] to provide privacy guarantees at the cost of performance.
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Fig. 5: Throughput-Latency graph comparing MYSTICETI-C performance with state-of-the-art consensus protocols.
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To ensure seamless integration with the existing Sui code-
base, we undertook a series of adaptations.

Code adaptations We improved system resilience through
the addition of new unit tests, crash recovery mechanisms,
and the integration of bulk catchup and synchronization code
from the Sui Bullshark [55] codebase. We also implemented
the Sui checkpoint mechanism [12] over MYSTICETI-C to
maintain compatibility with existing full nodes. Finally, we
integrated HammerHead [68], adding proposer reputation, to
further enhance stability and performance.

From prototype to production The roadmap spans from the
initial deployment of the unchanged prototype code to the
culmination of a production-ready version of MYSTICETI-C
deployed in Sui.

Explorations on how to integrate MYSTICETI-C started
in November 2023, with experimentation on the prototype
code (Section VI) and an exploration of which existing Sui
code components could be reused. We reached a significant

milestone in February 2024: deploying a production-ready
version of MYSTICETI-C onto the geo-distributed private test
environment. Initial testing was conducted on two testbeds,
one comprising 137 validators with equal voting power, and
one comprising 117 validators with voting power emulating the
distribution observed in the Sui mainnet. We conducted stress
tests mimicking traffic typically experienced by the blockchain,
ranging from 100 to 5,000 transactions per second.

Thorough testing is a priority to gain confidence before
the deployment of MYSTICETI-C into a live mainnet. First,
we developed and open-sourced a Domain-Specific Language
(DSL) to swiftly construct MYSTICETI’s DAG scenarios8,
facilitating comprehensive unit testing of MYSTICETI-C under
various conditions. This DSL simplifies testing by enabling
the creation of diverse DAG structures such as missing pro-
posers, and diverse successions of proposer-spots and parent-
child block relationships. Additionally, the tool provides visual
analysis capabilities through pretty prints.

Secondly, testing while maintaining the ability to measure
differences in performance is necessary to detect regressions.
For this reason, we alternate between running Bullshark,
the current consensus protocol of Sui, and MYSTICETI-C,
switching consensus with each epoch during both devnet and
testnet. Devnet epochs last 1 hour, while testnet epochs span
24 hours. This method allows for performance comparison and
provides reassurance that protocol upgrades can be executed
smoothly upon transitioning to the mainnet. Moreover, this
practice equips the team with valuable experience in the event
of unforeseen incidents, enabling a seamless transition back to
Bullshark if necessary.

The upcoming milestones include the devnet release sched-
uled for April 2024, on validators operated by the Sui team;
followed by the testnet release on May 2024, operated by
distinct and independent validator entities; finally the mainnet
release is anticipated around June 2024, on validators main-
taining the persistent state of Sui.

Performance assessment The performance results depicted
in Table I are provided by the Sui team. Measurements are
obtained from a private deployment on Vultr [69], utilizing
vbm-24c-256gb-amd instances deployed on 9 different
regions: Amsterdam, Frankfurt, Paris, Los Angeles, Califor-
nia, Newark, Japan, Delhi, and Johannesburg. Each machine
provides 25Gbps of bandwidth, 48 virtual CPUs (24 physical
cores) on a 2.85GHz AMD EPYC 7443P, 256GB memory, and
runs Linux Ubuntu server 22.04. The partially synchronous

8https://github.com/MystenLabs/sui/pull/16436
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Protocols Committee P50 Latency P95 Latency

Bullshark 137 2,890ms 4,600ms
MYSTICETI-C 137 650ms 975ms

TABLE I: Comparison of production performance: bullshark vs.
MYSTICETI-C deployment within Sui with 137 validators (with equal voting
power). Both systems are subjected to a load of 5,000 TPS and observed a
sustained throughput of 5,000 TPS. All benchmarks ran for many hours.

assumption is implemented by mandating validators to wait
an additional 250ms for the block of the first proposer slot of
the previous round after receiving 2f + 1 proposals from that
previous round.

Sui equipped with the production-ready implementation
of MYSTICETI-C demonstrates superior latency compared to
when equipped with the production-ready implementation of
Bullshark, with p50 and p95 latency of 650ms and 975ms
for 137 validators, respectively. In contrast, Sui equipped with
Bullshark exhibits a p50 and p95 latency of 2.89s and 4.6s
for the same configuration. The measurements are taken while
both systems run in their steady-state, with a load of 5,000
transactions per second (and exhibiting an equal throughout)
for multiple hours. These results demonstrate the substantial
latency improvements – of over 4x – brought to the blockchain
when swapping Bullshark for MYSTICETI-C.

IX. RELATED WORK

MYSTICETI is a family of protocols designed to support
next-generation distributed ledgers [5], [2], [36], [54]. To this
end, its goal is to capture as wide a range of distributed
ledgers as possible whether consensus-based or consensus-less.
The pioneer on hybrid distributed ledgers is the Sui Lutris
blockchain [12] which has been productionized by Sui [67].
However, the design of Sui Lutris focuses on providing a
glue between the two distinct use-cases of consensus-based
and consensus-less distributed ledgers, or in the production
code a glue of FastPay [8] and Bullshark [55]. This design
process of starting with the to-be-glued components and ending
in a final system has led to significant inefficiencies such as
multiple rebroadcasting of the same data as well as signature
verification costs. Unlike Sui Lutris, MYSTICETI is designed
from first principles and as a result shows a potential halving
of the latency, matching the lower bounds of PBFT [15] for
consensus and Reliable Broadcast [13], [14] for consensusless
distributed ledgers with equivocation tolerance.

We already discussed the core benefits of MYSTICETI-FPC
in terms of much lower CPU cost. In addition, it inherits
the ability to change epochs, reconfigure the validator set,
and tolerate equivocations from Sui Lutris. These benefits can
also be used to embed other broadcast-based protocols like
FastPay [8], Astro [23], and Zef [10], to improve privacy.

In terms of consensus, the most recent DagRider [34],
Narwhal-Tusk [25], Bullshark [55] were the inspiration for
using a structured DAG and defining a safe commit rule
on it. However, they all use a DAG of certified blocks
which increases both latency and implementation complexity.
MYSTICETI uses instead a DAG of signed but not certified
blocks, reducing latency significantly. Cordial Miners [35]
has also proposed a similar DAG-structure to MYSTICETI-C.
However, their Blocklace detects and excludes equivocating

miners so that it can eventually converge when there is no
misbehavior. Its expected latency is additionally higher than
MYSTICETI-C as it only commits one proposed block per
wave (3 rounds) and it lacks an implementation for us to do
some more direct comparison. MYSTICETI in comparison has
additionally shown how to integrate a fast path as well as
how to commit most of the blocks with an expected latency
of 3 rounds. The subsequent concurrent work on Flash [41]
also discussed how to leverage a blocklace/DAG to allow
for payments akin to the MYSTICETI-FPC fast path, but
without integrating it with a consensus path for complex
transactions. Motorway [32] uses a consensus protocol based
on ’data lanes’, a relaxed notion of a DAG where replicas
independently and concurrently disseminate data. Consensus
is achieved over metadata through any black-box consensus
mechanism, leveraging these data lanes as a data dissemination
layer. This approach is similar to Narwhal-HotStuff [25], with
the added benefit of increased performance by eliminating
the need for validators to progress in strict DAG rounds.
Unfortunately, this approach also increases significantly the
engineering complexity and foregoes the robustness properties
that structured DAG-based protocols have.

As far as the MYSTICETI-C commit rule is concerned, the
first proposal of having a pipelined and multi-proposer version
for quorum-based consensus comes from Multi-Paxos [40].
This work has been studied extensively as well as extended to
multiple directions [61], [62], [48]. However, it only addresses
crash and omission faults. The core idea can directly be
transferred to Byzantine faults as PBFT [15] uses a similar
structure to Paxos, and we can see its adoption in Mir-
BFT [57]. Blockmania [24] as well as Schett & Danezis [51]
further develop the idea for DAG-based consensus, and the
recent work Shoal [56] has applied it to certified DAGs with
recursive commit rules [55]. MYSTICETI’s commit rule is the
next evolution, extending pipelining into uncertified recursive
DAGs in order to achieve simultaneously the lowest latency
possible (3 message rounds, according to [45]) as well as the
maximal throughput and censorship resistance of DAGs.

Notably, Narwhal-based designs use a worker-primary
architecture to increase throughput. MYSTICETI-C can be
adapted to this architecture, by acting as a primary for any
number of workers in case additional throughput is needed.
Additionally, Shoal and HammerHead [68] propose leader
reputation protocols inspired by Carousel [20]. Our production
implementation of MYSTICETI-C adopts these designs to
select more reliable proposers (Section VIII), but for liveness,
it would need to adopt a proposer slot rotation schedule where
slots remain static for 3 rounds.

Previous consensus protocols such as Hashgraph [4] also
use a DAG of signed but not certified blocks: however, they use
DAGs that are not structured as threshold clocks [29] making
their proofs of safety very complex and leaving several open
questions regarding practical implementations [25]. Fino [44]
generalizes the commit rule of Bullshark to an unstructured
cetified DAG. BBCA-ledger [58] interweave together a novel
low-latency happy path based on a variant of Byzantine Con-
sistent Broadcast and Bullshark as a high-throughput DAG-
based fallback path.

Notably, MYSTICETI-C works in only 3 message com-
munication rounds, which matches PBFT, and is optimal
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latency [1], [17] without the use of optimistic methods
like Zyzzyva [39]. This is lower than the state-of-the-art
Jolteon [31] currently deployed in multiple blockchains [65],
[64], [63], [47]. The reason is that these protocols focus
on linear communication complexity, whereas MYSTICETI-
C embraces its cubic cost and amortizes it using the DAG
structure as first proposed by Dag-Rider and Narwhal. Finally,
non-Byzantine variants of consensus have also been defined
on threshold clocks, such as Que-Paxa [61] but cannot be
deployed as part of a blockchain.

X. CONCLUSION

We introduce MYSTICETI-C, a threshold clock-based
Byzantine consensus protocol with the lowest WAN latency
of 0.5s and the ability to process over 200k TPS at this
latency for single-host nodes, far exceeding the needs of
blockchains today (which consume in total about 1.2k TPS).
We additionally present MYSTICETI-FPC, a fast path protocol
achieves even lower latency at 0.25s but with over 8x better
resource efficiency compared with protocols with explicit
certificates. Despite being designed in a BFT setting, both
MYSTICETI protocols efficiently handle crash faults using
multiple proposer slots per round, implemented through a
novel decision rule.

We leave several explorations for the future. For use cases
requiring higher throughput, we note that MYSTICETI-C can
be augmented with workers, in a similar way to Tusk and
Bullshark. This would allow it to scale without known bounds,
at the cost of additional latency (a round trip) to coordinate
workers and primaries. An alternative approach would be to
run multiple MYSTICETI-C instances in parallel, something we
feel is under-explored but inspired us to have explicit votes in
MYSTICETI-FPC. The structure of MYSTICETI-FPC has all
nodes timestamping transactions through their votes and may
be useful for implementing MEV protections.
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APPENDIX A
EXAMPLE OF MYSTICETI-C EXECUTION

This section completes Section III by providing a step-
by-step example of a MYSTICETI-C execution by leveraging
Figure 4a of Section III. This figure illustrates an example
of a MYSTICETI DAG with four validators, (A0, A1, A2,
A3), four slots per round. Initially, all proposers are marked
as undecided.

Slots classification. The validator applies the direct decision
rule starting with the latest slots, L6d, L6c, L6b, L6a, L5d, L5c,
L5b, L5a (in that order), but fails to determine their status due
to the absence of both a skip pattern and a certificate pattern.
They thus remain undecided.

The direct decision rule then successfully marks L4d as
to-commit due to the presence of 2f + 1 certificate patterns,
colored in green in Figure 4b. This reasoning is then applied
successively to L4c and L4b, also marked as to-commit.
Figure 4c then demonstrates the direct decision rule applied to
L4a, resulting in its classification as to-skip due to the presence
of a skip pattern. Continuing with L3d, L3c, L3b, and L2d, the
direct decision rule categorizes them all as to-commit, similar
to L4d, L4c, L4b.

Moving to L2c, Figure 4d shows the direct decision rule
failing to classify it. Lacking both a skip and certificate
pattern, the validator resorts to the indirect decision rule. It
first identifies the anchor of L2c, which is the block with the
lowest rank and round number r′ such that (r′ > r + 2) and
that is marked as either undecided or to-commit. In this case,
L2c’s anchor is L5a. Since L5a is undecided, L2c remains so
as well. The same reasoning is applied to L2b which is also
marked undecided. Proceeding with L2a, the direct decision
rule marks it as to-commit.

However, the direct decision rule cannot classify L1d.
Consequently, Figure 4e demonstrates the application of the
indirect decision rule to L1d, with L4b as its anchor (note that
L4a is marked to-skip and thus cannot be an anchor). Since
L4b is marked to-commit, and L1d has a certificate pattern
linking to its anchor, L1d is marked to-commit.

After marking L1c as to-commit in the same way as
L1d, the validator analyzes L1b. Since the direct decision rule
cannot decide it, the indirect decision rule is applied with L4a
as its anchor. Unlike L1d, there’s no certified link from L4a to
L1b, resulting in L1b being marked to-skip (Figure 4). Finally,
L1a is marked to-commit via the direct decision rule.

Commit sequence. With as many proposers as possible classi-
fied as either to-commit or to-skip, the validator can establish
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r+1 r+2
Payload

owned:  T1
shared: T2
owned: T3
shared: T4
shared: T5
owned: T6

Vote
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Fig. 8: Illustration fast path transaction execution. The blocks (A0, r, ·) con-
tain the fast path transactions T1, T3, and T6. Blocks (A0, r+1, ·), (A1, r+
1, ·), (A2, r + 1, ·) support (A0, r, Lr) and explicitly vote for T1 and T3

(but not T6). Upon observing these blocks, the validator can safely execute
T1 and T3.

the commit sequence. Beginning with the lowest slot, it outputs
slots marked as to-commit while skipping those marked to-
skip, halting once an undecided slot is encountered. The
resulting commit sequence is L1a, L1c, L1d, L2a. Eventually,
the DAG will progress and the slot L5a will be classified either
as to-commit or to-skip, allowing the validator to classify L2c
and all subsequent slots.

APPENDIX B
DETAILED MYSTICETI-FPC PROTOCOL

This section completes Section IV by providing deeper
details of the MYSTICETI-FPC protocol.

A. Execution and finality

Similarly to Sui [12], MYSTICETI-FPC introduces the dis-
tinction between fast path execution and fast path finality. The
former refers to the moment when a transaction is executed by
a validator, the execution effects are known, and the validator
can execute subsequent transactions over the same object.
The latter signifies when a transaction is considered final,
ensuring persistence across epoch boundaries and validator
reconfigurations.

Fast path execution. A validator can safely execute a fast path
transaction once it observes blocks from 2f +1 validators that
include a vote for the transaction. Due to quorum intersection,
no correct validator will ever execute conflicting fast path
transactions. Figure 8 illustrates a DAG pattern enabling the
validator to safely execute fast path transactions T1 and T3.
The blocks (A0, r, ·) contain the fast path transactions T1, T3,
and T6, while the blocks (A0, r + 1, ·), (A1, r + 1, ·), and
(A2, r+1, ·) support (A0, r, Lr) and explicitly vote for T1 and
T3 (but not for T6

9). Upon observing these blocks, the validator
can safely execute T1 and T3. Note that MYSTICETI-FPC
transaction execution can be extremely low-latency, requiring
only a single round of communication, as opposed to the 2
rounds required by related work [12], [9], [23], [11].

Fast path finality. Transactions executed by some honest
validators can still be reverted since there is no guarantee that

9Transaction T6 may conflict with another transaction for which the
validator already voted.
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Fig. 9: Illustration of the scenario where transactions T1 and T3 are executed
by validator A3 at round r+2 but no other validator observes sufficient votes
to execute those transactions, and validator A3 reverts their execution upon
epoch change.

other validators will eventually observe sufficient evidence to
execute the transaction. For instance, Figure 9 illustrates a
scenario where transactions T1 and T3 are executed by val-
idator A3 at round r+3, but no proposals from that validators
are included into the DAG for rest of the epoch, possibly
due to network asynchrony. Consequently, no other validator
observes sufficient evidence to execute those transactions, and
validator A3 reverts their execution upon epoch change. Note
that reverting execution is a straightforward operation and
already supported by the Sui protocol, the only blockchain
deploying a fast path.

To ensure that the effects of a fast path transaction endure
across epoch boundaries and validator reconfiguration, it must
be finalized. A fast path transaction is finalized when the
validator observes either (1) 2f+1 certificate patterns over the
block proposing the transaction (as detailed in Section II-C),
each containing 2f + 1 votes for the transaction, or (2) a
single certificate pattern over the block proposing the trans-
action, which includes 2f + 1 votes for the transaction and is
referenced in the causal history of a block committed by the
consensus protocol. Figure 10 illustrates these two possible
finality pattern for fast path transactions T1 and T3.

The finality of a fast path transaction across epoch changes
is proven by Theorem 5 of Section V.

Additionally, Section B-B outlines how MYSTICETI-FPC
accommodates transactions containing both owned object and
non-owned object inputs.

B. Mixed-objects transactions

MYSTICETI-FPC allows for transactions that contain both
owned-object and non-owned-object inputs. Such transactions
are called mixed-objects transactions. Validators execute and
finalize these transactions upon observing (1) blocks from 2f+
1 validators that include a vote for the transaction, and (2) a
block committed by the consensus protocol referencing these
blocks in its causal history.

Figure 11 provides an example illustrating the finalization
of a mixed-object transaction. This mechanism intuitively
operates in two steps: first, it “locks” the owned-object inputs,
and then sequences this lock to prevent the execution of
potentially conflicting owned-object transactions. The safety
of this approach is guaranteed by Theorem 6 of Section V.
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owned: T3
shared: T4
shared: T5
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Vote
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r+1

(a) Transactions T1 and T3 proposed by (A0, r, ·) are finalized at round r + 2
upon observing the 2f+1 certificate pattern defined by (A0, r+2, ·), (A1, r+
2, ·), and (A3, r+2, ·), referencing the 2f +1 blocks (A0, r, ·), (A1, r, ·), and
(A3, r, ·) that explicitly vote for T1 and T3.

Consensus
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(b) Transactions T1 and T3 proposed by (A0, r, ·) are finalized after consensus
upon committing block (A1, r + 2, ·). This block defines a certificate pattern
over (A0, r, ·) that contains (A0, r+1, ·), (A1, r+1, ·), and (A3, r+1, ·) that
vote for T1 and T3.

Fig. 10: Illustration of the two fast path transaction finalization scenarios.

Consensus
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Fig. 11: Illustration of a mixed-objects transaction T5 that contains both
owned-object inputs and non-owned-object inputs. T5 is proposed as part of
(A0, r, ·). Blocks (A0, r1, ·), (A1, r+1, ·), and (A3, r+2, ·) vote for T5. The
validator can execute and finalize T5 once block (A3, r + 2, ·) is committed
by the consensus protocol.

APPENDIX C
ADDITIONAL SECURITY PROOFS

This section completes Section V by presenting the in-
tegrity and liveness proofs of MYSTICETI-C, and the safety
and liveness proofs of MYSTICETI-FPC.

A. Integrity and liveness of MYSTICETI-C

MYSTICETI-C guarantees integrity (Section II) by con-
struction.
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Theorem 2 (Integrity). MYSTICETI-C satisfies the integrity
property of Byzantine Atomic Broadcast.

Proof: The algorithm to linearize the causal history of a
committed proposer block removes any block with duplicate
sequence numbers before delivering the sequence of blocks.

We show the liveness of MYSTICETI-C under partial
synchrony (Section II).

Lemma 8 (Round-Synchronization). After GST all honest
parties will enter the same round within ∆.

Proof: After GST all messages sent before GST deliver
within ∆. This means that if r is the highest round any honest
validator proposed a block for before GST, then every honest
validator will receive the block proposal of the honest validator
at GST +∆ and also enter r.

Lemma 9 (Leader-Proposal). After GST an honest proposer’s
proposal will get votes from every honest validator.

Proof: After GST if an honest validator enters wave w,
then it has to broadcast the last block of wave w−1. Within ∆
the honest proposer (and every other honest party) will receive
the block and adopt the parents, being able to also enter wave
w as they are all synchronized (Lemma 8). Then the honest
proposer will directly propose its block. Since the timeout is
set to 2·∆ the proposer’s block of wave w will arrive before the
first honest validator times out hence, every honest validator
will vote for the proposer.

Lemma 10 (Sufficient Votes). After GST all honest validators
will create a certificate for the honest proposer.

Proof: By Lemma 9 all honest validators will vote for an
honest proposer after GST. For an honest validator to propose
a block at the decision round it needs to (a) get the proposal of
the proposer and (b) have 2f+1 parents. All honest validators
receive the proposer proposal within ∆ since the proposer
is honest. Additionally once a honest validator advances to
the decision round all honest validators will receive its block
proposal and adopt the parents within ∆. Consequently, by
construction, honest validators wait for 2 · ∆ before giving
up the certificate creation and will receive the votes from all
honest validators witnessing a certificate

Lemma 11. The round-robin schedule of proposers in MYS-
TICETI ensures that in any window of 3f + 3 rounds, there
are three consecutive rounds with honest primary proposers.
A primary proposer is the proposer of the first slot of a round.

Proof: There are 3f + 1 groups of three consecutive
rounds. Due to the round-robin schedule, each of the honest
validators must be the primary proposer in exactly 3 of these
groups. As there are 2f + 1 honest validators, due to the
pigeonhole principle, one group must contain ⌈ 3∗(2f+1)

3f+1 ⌉ =
3 honest proposers.

Lemma 12. After GST any undecided slot eventually gets
decided.

Proof: Let there be an undecided slot s in round r. After
GST, due to Lemma 11, there will eventually be an honest

proposer for the first slots s0, s1 and s2 of rounds k, k+1 and
k + 2 respectively, where k > r. By Lemma 10, the honest
proposer’s blocks will have 2f+1 certificates and be scheduled
for a commit. We now prove that by induction, all slots in
round ≤ k − 1 get decided. In the base case, any undecided
slots in rounds k−3, k−2 or k−1 get decided by the commits
in slots s0, s1 and s2 respectively, as they are the first slots
higher than the respective decision rounds. For the induction
step, any undecided slot s in round x ≤ k−4 also gets decided
since s0 is higher than the decision round of x and there are
no undecided slots between s and s0 (induction hypothesis).

Theorem 3 (Consensus Liveness). After GST the proposal of
an honest proposer will commit.

Proof: By Lemma 10 there will be 2f + 1 certificates
for the proposer, one per honest party. By the code an honest
validator tries to commit the proposer for every block they get
so eventually they will get the 2f+1 certificates. The validator
schedules the block to be committed. By Lemma 12, all prior
undecided blocks will eventually be decided, and the validator
will deliver the honest proposer’s block.

Theorem 4 (Agreement). MYSTICETI-C satisfies the agree-
ment property of Byzantine Atomic Broadcast.

Proof: If a correct validator outputs a deliveri(b, r, vk),
then it must have committed a sequence of proposer blocks
L = l0, l1...ln such that the deterministic algorithm to deliver
blocks from the sequence L delivers block b. Another correct
validator Y that has not delivered b will eventually see a
proposal b′ from an honest proposer in round r′ > r as per
the proposer schedule of MYSTICETI-C. Due to Theorem 3,
after GST, Y will commit the proposer’s block b′. Due to
Lemma 7, Y will also commit the proposer sequence L before
committing b′. Since Y follows an identical deterministic
algorithm as X to deliver blocks from the committed sequence
of proposer blocks, it also delivers b′ eventually.

B. Safety and liveness of MYSTICETI-FPC

We argue the safety and liveness of MYSTICETI-FPC.

Theorem 5 (Epoch close safety). Transactions finalized by
MYSTICETI-FPC in an epoch continue to persist in all sub-
sequent epochs.

Proof: It is sufficient to prove that all fast-path trans-
actions that are considered final have one certifying block
committed in the current epoch. For contradiction’s sake,
assume that the epoch closed before any certifying block for a
finalized transaction tx could be committed. For the epoch to
close, blocks from 2f+1 validators with the epoch-change bit
set must be committed. Since tx is finalized, 2f+1 validators,
by definition, publish a block that certifies the transaction. By
quorum intersection, one honest validator v published a block
B1 in round r1 certifying transaction tx, whereas a block B2

in round r2 from v with epoch-change bit set must have been
committed. All blocks published by v in rounds ≥ r2 also
have the epoch-change bit set. Because blocks with the epoch-
change bit set, by definition, do not certify any transaction, B1

is necessarily published in an earlier round than that of B2 (i.e.

18



r1 < r2). B1 is therefore contained in the causal history of B2,
and must also have been committed, which is a contradiction.

Theorem 6 (MYSTICETI-FPC Safety). An honest validator in
MYSTICETI-FPC never finalizes two conflicting transactions.

Proof: Transactions that have an owned object as input
require votes from 2f + 1 validators to be finalized. If two
conflicting fast paths are finalized, an honest validator must
have voted for both transactions (by quorum intersection),
hence a contradiction. Using a similar argument, a fast path
transaction does not conflict with a consensus path transaction,
as the consensus path in MYSTICETI-FPC finalizes a transac-
tion with an owned object input only if it has votes from 2f+1
validators.

Theorem 7 (Fast-Path Liveness). An honest fast-path trans-
action will commit after GST.

The proof is the same as consistent broadcast. We do it
after GST assuming the epoch does not end. If the epoch has
infinite length then we can convert all references to ∆ with
“eventually” and the proof will work in asynchrony.

Proof: An honest validator will submit a fast-path trans-
action that does not have equivocation. As a result, all honest
validators will receive it after ∆ and vote. These votes will
appear in the DAG after at most 4 ·∆ since any round has at
most duration of timeout+∆ = 3 ·∆. In the next round, every
honest validator will reference the 2f + 1 votes in their DAG
and execute.

Theorem 8 (Equivocation-Tolerence). If a faulty validator vk
concurrently called r bcastk(m, q, e) and r bcastk(m′, q, e)
with m ̸= m′ then the rest of the validators either
r deliveri(m, q, vk, e), or r deliveri(m′, q, vk, e), or there
is a subsequent epoch e′ > e where vk is hon-
est, calls r bcastk(m′′, q, e′) and all honest validators
r deliveri(m′′, q, vk, e

′),

Proof: For the case that validators r deliveri(m′, q, vk, e)
it is a direct result of Theorem 7. Otherwise, from the code
of the epoch change when the epoch ends all validators forget
the locks they have taken on messages without certificates. As
a result in a future epoch e′ where vk is honest and does not
equivocate it will be able to commit m again from Thereon 7.

APPENDIX D
REPRODUCING EXPERIMENTS

We provide the orchestration scripts10 used to benchmark
the MYSTICETI codebase on AWS and produce the bench-
marks of Section VII.

Deploying a testbed. The file ‘~/.aws/credentials’ should have
the following content:

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

10https://github.com/asonnino/mysticeti/tree/paper (commit 96fd831)

configured with account-specific AWS access key id and secret
access key. It is advise to not specify any AWS region
as the orchestration scripts need to handle multiple regions
programmatically.

A file ‘settings.yaml’ contains all the configuration param-
eters for the testbed deployment. We run the experiments of
Section VII with the following settings:
---
t e s t b e d i d : "${USER}-mysticeti"
c loud prov ider : aws
t o k e n f i l e : "/Users/${USER}/.aws/credentials"
s s h p r i v a t e k e y f i l e : "/Users/${USER}/.ssh/aws"
r e g i o n s :

- us − eas t −1
- us −west −2
- ca − c e n t r a l −1
- eu− c e n t r a l −1
- eu−west −1
- eu−west −2
- eu−west −3
- eu−north −1
- ap−south −1
- ap− s o u t h e a s t −1
- ap− s o u t h e a s t −2
- ap− northeas t −1
- ap− northeas t −2

s p e c s : m5d . 8 x l a r g e
r e p o s i t o r y :

u r l : h t t p s : / / g i t h u b . com /AUTHOR/ REPO . g i t
commit: main

node parameters path : "crates/orchestrator/assets/node-parameters.yml"
c l i e n t p a r a m e t e r s p a t h : "crates/orchestrator/assets/client-parameters.yml"
benchmark duration : 1000

where the file ‘/Users/$USER/.ssh/aws’ holds the ssh pri-
vate key used to access the AWS instances, and ‘AUTHOR’
and ‘REPO’ are respectively the GitHub username and repos-
itory name of the codebase to benchmark. To run benchmarks
with faults (Section VII-C), we add the following configuration
at the end of the ‘settings.yaml’ file:
f a u l t s : ! Permanent { f a u l t s : 3 }

The orchestrator binary provides various functionalities
for creating, starting, stopping, and destroying instances. For
instance, the following command to boots 2 instances per
region (if the settings file specifies 13 regions, as shown in
the example above, a total of 26 instances will be created):

cargo run --bin orchestrator -- testbed deploy --instances 2

The following command displays he current status of the
testbed instances

cargo run --bin orchestrator testbed status

Instances listed with a green number are available and ready
for use and instances listed with a red number are stopped. It
is necessary to boot at least one instance per load generator,
one instance per validator, and one additional instance for
monitoring purposes (see below). The following commands
respectively start and stop instances:

cargo run --bin orchestrator -- testbed start
cargo run --bin orchestrator -- testbed stop

It is advised to always stop machines when unused to avoid
incurring in unnecessary costs.

Running Benchmarks. Running benchmarks involves in-
stalling the specified version of the codebase on all remote
machines and running one validator and one load generator per
instance. For example, the following command benchmarks a
committee of 50 validators under a constant load of 1,000 tx/s:
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cargo run --bin orchestrator -- benchmark \
--committee 50 fixed-load --loads 1000

The nodes and clients configuration files (respectively spec-
ified in ‘crates/orchestrator/assets/node-parameters.yml’ and
‘crates/orchestrator/assets/client-parameters.yml’) are used to
respectively parametrize the nodes and clients. We run our
benchmarks with the nodes configuration file as follows:
l e a d e r t i m e o u t :

s e c s : 1
nanos: 0

and the client configuration file as follows:
i n i t i a l d e l a y :

s e c s : 400
nanos: 0

Monitoring. The orchestrator provides facilities to monitor
metrics. It deploys a Prometheus instance and a Grafana
instance on a dedicated remote machine. Grafana is then
available on the address printed on stdout when running
benchmarks with the default username and password both set
to admin. An example Grafana dashboard can be found in
the file ‘grafana-dashboard.json’11.

11https://github.com/asonnino/mysticeti/blob/paper/crates/orchestrator/
assets/grafana-dashboard.json

20

https://github.com/asonnino/mysticeti/blob/paper/crates/orchestrator/assets/grafana-dashboard.json
https://github.com/asonnino/mysticeti/blob/paper/crates/orchestrator/assets/grafana-dashboard.json

	Introduction
	Overview
	System model, goals, and assumptions
	Intuition behind the Mysticeti design
	The structure of the Mysticeti DAG

	The Mysticeti-C Consensus Protocol
	Proposer slots
	The Mysticeti-C decision rule
	Choosing the number of proposer slots
	Mysticeti-C Algorithms

	The Mysticeti-FPC fast path protocol
	Embedding a fast path into the DAG
	Epoch change and reconfiguration

	Mysticeti-C Security
	Implementation
	Evaluation
	Experimental setup
	Benchmark in ideal conditions
	Benchmark with faults
	Benchmark of the fast path

	Mysticeti in Production
	Related Work
	Conclusion
	References
	Appendix A: Example of Mysticeti-C Execution
	Appendix B: Detailed Mysticeti-FPC Protocol
	Execution and finality
	Mixed-objects transactions

	Appendix C: Additional Security Proofs
	Integrity and liveness of Mysticeti-C
	Safety and liveness of Mysticeti-FPC

	Appendix D: Reproducing Experiments



