The Sui Smart Contracts Platform

The MystenLabs Team
hello@mystenlabs.com

1 INTRODUCTION

Sui is a decentralized permissionless smart contract platform biased
towards low-latency management of assets. It uses the Move pro-
gramming language to define assets as objects that may be owned
by an address. Move programs define operations on these typed
objects including custom rules for their creation, the transfer of
these assets to new owners, and operations that mutate assets.

Sui is maintained by a permissionless set of authorities that play
arole similar to validators or miners in other blockchain systems. It
uses a Byzantine consistent broadcast protocol between authorities
to ensure the safety of common operations on assets, ensuring lower
latency and better scalability as compared to Byzantine agreement.
It only relies on Byzantine agreement for the safety of shared objects.
As well as governance operations and check-pointing, performed
off the critical latency path. Execution of smart contracts is also
naturally parallelized when possible. Sui supports light clients that
can authenticate reads as well as full clients that may audit all
transitions for integrity. These facilities allow for trust-minimized
bridges to other blockchains.

A native asset SUI is used to pay for gas for all operations. It is
also used by its owners to delegate stake to authorities to operate
Sui within epochs, and periodically, authorities are reconfigured
according to the stake delegated to them. Used gas is distributed to
authorities and their delegates according to their stake and their
contribution to the operation of Sui.

This whitepaper is organized in two parts, with Sect. 2 describing
the Sui programming model using the Move language, and Sect. 4
describing the operations of the permissionless decentralized sys-
tem that ensures safety, liveness and performance for Sui.

2 SUI SMART CONTRACT PROGRAMMING

Sui smart contracts are written in the Move[4] language. Move
is safe and expressive, and its type system and data model natu-
rally support the parallel agreement/execution strategies that make
Sui scalable. Move is an open-source programming language for
building smart contracts originally developed at Facebook for the
Diem blockchain. The language is platform-agnostic, and in ad-
dition to being adopted by Sui, it has been gaining popularity on
other platforms (e.g., OL, StarCoin).

In this section we will discuss the main features of the Move
language and explain how it is used to create and manage assets on
Sui. A more thorough explanation of Move’s features can be found
in the Move Programming Language book! and more Sui-specific
Move content can be found in the Sui Developer Portal?, and a
more formal description of Move in the context of Sui can be found
in Section 3.

Thttps://diem.github.io/move/
Zhttps://github.com/MystenLabs/fastnft/blob/main/doc/SUMMARY.md

2.1 Overview

Sui’s global state includes a pool of programmable objects created
and managed by Move packages that are collections of Move mod-
ules (see Section 2.1.1 for details) containing Move functions and
types. Move packages themselves are also objects. Thus, Sui objects
can be partitioned into two categories:

o Struct data values: Typed data governed by Move modules.
Each object is a struct value with fields that can contain
primitive types (e.g. integers, addresses), other objects, and
non-object structs.

e Package code values: a set of related Move bytecode mod-
ules published as an atomic unit. Each module in a package
can depend both on other modules in that package and on
modules in previously published packages.

Objects can encode assets (e.g., fungible or non-fungible tokens),
capabilities granting the permission to call certain functions or
create other objects, “smart contracts” that manage other assets,
and so on-it’s up to the programmer to decide. The Move code to
declare a custom Sui object type looks like this:

struct Obj has key {
id: VersionedID, // globally unique ID and version
f: u64 // objects can have primitive fields
g: OtherObj // fields can also store other objects

}

All structs representing Sui objects (but not all Move struct
values) must have the id field and the key ability® indicating that
the value can be stored in Sui’s global object pool.

2.1.1 Modules. A Move program is organized as a set of modules,
each consisting of a list of struct declarations and function declara-
tions. A module can import struct types from other modules and
invoke functions declared by other modules.

Values declared in one Move module can flow into another-
e.g., module OtherObj in the example above could be defined in a
different module than the module defining 0bj. This is different
from most smart contract languages, which allow only unstructured
bytes to flow across contract boundaries. However, Move is able
to support this because it provides encapsulation features to help
programmers write robustly safe [14] code. Specifically, Move’s
type system ensures that a type like Obj above can only be created,
destroyed, copied, read, and written by functions inside the module
that declares the type. This allows a module to enforce strong
invariants on its declared types that continue to hold even when
they flow across smart contract trust boundaries.

2.1.2 Transactions and Entrypoints. The global object pool is up-
dated via transactions that can create, destroy, read, and write
objects. A transaction must take each existing object it wishes to
operate on as an input. In addition, a transaction must include the

Shttps://diem.github.io/move/abilities.html

https://diem.github.io/move/
https://github.com/MystenLabs/fastnft/blob/main/doc/SUMMARY.md
https://diem.github.io/move/abilities.html

versioned ID of a package object, the name of a module and func-
tion inside that package, and arguments to the function (including
input objects). For example, to call the function
public fun entrypoint(

ol: Obj, o02: &mut Obj, o03: &0bj, x: u64, ctx: &mut TxContext
>y { ...}
a transaction must supply ID’s for three distinct objects whose
type is Obj and an integer to bind to x. The TxContext is a special
parameter filled in by the runtime that contains the sender address
and information required to create new objects.

Inputs to an entrypoint (and more generally, to any Move func-
tion) can be passed with different mutability permissions encoded
in the type. An Obj input can be read, written, transferred, or de-
stroyed. A &mut Obj input can only be read or written, and a 80bj
can only be read. The transaction sender must be authorized to use
each of the input objects with the specified mutability permissions—
see Section 4.4 for more detail.

2.1.3 Creating and Transferring Objects. Programmers can create
objects by using the TxContext passed into the entrypoint to gener-
ate a fresh ID for the object:

public fun create_then_transfer(

f: u64, g: OtherObj, ol: Obj, ctx: &mut TxContext
) iet 02 = Obj { id: TxContext::fresh_id(ctx), f, g };

Transfer::transfer(ol, TxContext:sender());

Transfer::transfer (o2, TxContext:sender());

}

This code takes two objects of type Other0Obj and Obj as input,
uses the first one and the generated ID to create a new 0bj, and
then transfers both 0bj objects to the transaction sender. Once an
object has been transferred, it flows into the global object pool and
cannot be accessed by code in the remainder of the transaction. The
Transfer module is part of the Sui standard library, which includes
functions for transferring objects to user addresses and to other
objects.

We note that if the programmer code neglected to include one
of the transfer calls, this code would be rejected by the Move type
system. Move enforces resource safety [5] protections to ensure
that objects cannot be created without permission, copied, or acci-
dentally destroyed. Another example of resource safety would be
an attempt to transfer the same object twice, which would also be
rejected by the Move type system.

3 THE SUI PROGRAMMING MODEL

In this section, we expand on the informal description of the Sui
programming model from Section 2 by presenting detailed seman-
tic definitions. The previous section showed examples of Move
source code; here we define the structure of Move bytecode. De-
velopers write, test, and formally verify [10, 16] Move source code
locally, then compile it to Move bytecode before publishing it to
the blockchain. Any Move bytecode be published on-chain must
pass through a bytecode verifier[4, 5] to ensure that it satisfies key
properties such as type, memory, and resource safety.

As mentioned in Section 2, Move is a platform-agnostic language
which can be adapted to fit specific needs of different systems
without forking the core language. In the following description, we
define both concepts from core Move language (denoted in black

and The MystenLabs Team

text) and Sui-specific features extending the core Move language
(denoted with text).

3.1 Modules

Module = ModuleNamex
(StructName — StructDecl)x
(FunName — FunDecl) X

GenericParam = [Ability]

StructDecl = (FieldName — StorableType)x

[Ability] x [GenericParam]
FunDecl = [Type] [Type] X [Instr] x [GenericParam]
Instr = | | |

Table 1: Module

Move code is organized into modules whose structure is defined in
Table 1. A module consists of a collection of named struct declara-
tions and a collection of named function declarations (examples of
these declaration are provided in Section 2.1). A module also con-
tains a special function declaration serving as the module initializer.
This function is invoked exactly once at the time the module is
published on-chain.

A struct declaration is a collection of named fields, where a field
name is mapped to a storeable type. Its declaration also includes an
optional list of abilities (see Section 2 for a description of storeable
types and abilities). A struct declaration may also include a list of
generic parameters with ability constraints, in which case we call it a
generic struct declaration, for example struct Wrapper<T: copy>{
t: T }. A generic parameter represents a type to be used when
declaring struct fields - it is unknown at the time of struct declara-
tion, with a concrete type provided when the struct is instantiated
(i.e., as struct value is created).

A function declaration includes a list of parameter types, a list of
return types, and a list of instructions forming the function’s body.
A function declaration may also include a list of generic parameters
with ability constraints, in which case we call it a generic function
declaration, for example fun unwrap<T: copy>(p: Wrapper<T>){}.
Similarly to struct declarations, a generic parameter represents
a type unknown at function declaration time, but which is never-
theless used when declaring function parameters, return values
and a function body (concrete type is provided when a function is
called).

Instructions that can appear in a function body include all or-
dinary Move instructions with the exception of global storage in-
structions (e.g., move_to, move_from, borrow_global). See [14] for a
complete list of core Move’s instructions and their semantics. In Sui
persistent storage is supported via Sui’s global object pool rather
than the account-based global storage of core Move.

There are four Sui-specific object operations. Each of these oper-
ations changes the ownership metadata of the object (see Section
3.3) and returns it to the global object pool. Most simply, a Sui object
can be transferred to the address of a Sui end-user. An object can
also be transferred to another parent object-this operation requires
the caller to supply a mutable reference to the parent object in

The Sui Smart Contracts Platform

addition to the child object. An object can be mutably shared so it
can be read/written by anyone in the Sui system. Finally, an object
can be immutably shared so it can be read by anyone in the Sui
system, but not written by anyone.

The ability to distinguish between different kinds of ownership
is a unique feature of Sui. In other blockchain platforms we are
aware of, every contract and object is mutably shared. As we will
explain in Section 4, Sui leverages this information for parallel
transaction execution (for all transactions) and parallel agreement
(for transactions involving objects without shared mutability).

3.2 Types and Abilities

PrimType = {address, id,bool, u8,u64, ...}

StructType = ModuleName x StructNamex
[StorableType]

StorableType = PrimType W StructTypew
GenericType W VectorType

VectorType = StorableType

GenericType = N

MutabilityQual = {mut, immut}

ReferenceType = StorableType X MutabilityQual

Type = ReferenceType W StorableType

Ability = {key, store, copy, drop}

Table 2: Types and Abilities

A Move program manipulates both data stored in Sui global object
pool and transient data created when the Move program executes.
Both objects and transient data are Move values at the language
level. However, not all values are created equal - they may have
different properties and different structure as prescribed by their
types.

The types used in Move are defined in Table 2. Move supports
many of the same primitive types supported in other programming
languages, such as a boolean type or unsigned integer types of var-
ious sizes. In addition, core Move has an address type representing
an end-user in the system that is also used to identify the sender of
a transaction and (in Sui) the owner of an object. Finally, Sui defines
an id type representing an identity of a Sui object— see Section 3.3
for details.

A struct type describes an instance (i.e., a value) of a struct de-
clared in a given module (see Section 3.1 for information on struct
declarations). A struct type representing a generic struct declara-
tion (i.e., generic struct type) includes a list of storeable types — this
list is the counterpart of the generic parameter list in the struct dec-
laration. A storeable type can be either a concrete type (a primitive
or a struct) or a generic type. We call such types storeable because
they can appear as fields of structs and in objects stored persistently
on-chain, whereas reference types cannot.

For example, the Wrapper<u64> struct type is a generic struct type
parameterized with a concrete (primitive) storeable type u64 — this
kind of type can be used to create a struct instance (i.e.,value). On the
other hand, the same generic struct type can be parameterized with
a generic type (e.g., struct Parent<T> { w: Wrapper<T> }) coming

from a generic parameter of the enclosing struct or function dec-
laration - this kind of type can be used to declare struct fields,
function params, etc. Structurally, a generic type is an integer index
(defined as N in Table 5) into the list of generic parameters in the
enclosing struct or function declaration.

A wvector type in Move describes a variable length collection of
homogenous values. A Move vector can only contain storeable
types, and it is also a storeable type itself.

A Move program can operate directly on values or access them
indirectly via references. A reference type includes both the storeable
type referenced and a mutability qualifier used to determine (and
enforce) whether a value of a given type can be read and written
(mut) or only read (immut). Consequently, the most general form of
a Move value type (Type in Table 2) can be either a storeable type
or a reference type.

Finally, abilities in Move control what actions are permissible
for values of a given type, such as whether a value of a given type
can be copied (duplicated). Abilities constraint struct declarations
and generic type parameters. The Move bytecode verifier is respon-
sible for ensuring that sensitive operations like copies can only be
performed on types with the corresponding ability.

3.3 Objects and Ownership

TxDigest = Com(Tx)
ObjID = Com(TxDigest x N)
SingleOwner = Addr & ObjID

Shared = {shared_mut, shared_immut}
Ownership = SingleOwner & Shared
StructObj = StructType X Struct

ObjContents = StructObj W Package
Obj = ObjContents x ObjID x Ownership X Version

Table 3: Objects and Ownership

Each Sui object has a globally unique identifier (ObjID in Table 3)
that serves as the persistent identity of the object as it flows between
owners and into and out of other objects. This ID is assigned to the
object by the transaction that creates it. An object ID is created by
applying a collision-resistant hash function to the contents of the
current transaction and to a counter recording how many objects
the transaction has created. A transaction (and thus its digest) is
guaranteed to be unique due to constraints on the input objects of
the transaction, as we will explain subsequently.

In addition to an ID, each object carries metadata about its own-
ership. An object is either uniquely owned by an address or another
object, shared with write/read permissions, or shared with only
read permissions. The ownership of an object determines whether
and how a transaction can use it as an input. Broadly, a uniquely
owned object can only be used in a transaction initiated by its
owner or including its parent object as an input, whereas a shared
object can be used by any transaction, but only with the specified
mutability permissions. See Section 4.4 for a full explanation.

There are two types of objects: package code objects, and struct
data objects. A package object contains of a list of modules. A struct
object contains a Move struct value and the Move type of that value.

The contents of an object may change, but its ID, object type (pack-
age vs struct) and Move struct type are immutable. This ensures
that objects are strongly typed and have a persistent identity.

Finally, an object contains a version. Freshly created objects
have version 0, and an object’s version is incremented each time a
transaction takes the object as an input.

3.4 Addresses and Authenticators

Authenticator =
Addr =

Ed25519PubKey & ECDSAPubKey W ...
Com(Authenticator)

Table 4: Addresses and Authenticators

An address is the persistent identity of a Sui end-user (although
note that a single user can have an arbitrary number of addresses).
To transfer an object to another user, the sender must know the
address of the recipient.

As we will discuss shortly, a Sui transaction must contain the
address of the user sending (i.e., initiating) the transaction and an
authenticator whose digest matches the address. The separation
between addresses and authenticators enables cryptographic agility.
An authenticator can be a public key from any signature scheme,
even if the schemes use different key lengths (e.g., to support post-
quantum signatures). In addition, an authenticator need not be a
single public key-it could also be (e.g.) a K-of-N multisig key.

3.5 Transactions

ObjRef = ObjID x Version x Com(Obj)

CallTarget = ObjRef X ModuleName X FunName

CallArg = ObjRef & ObjID W PrimType

Package = [Module]

Publish = Package X [ObjRef]

Call = CallTarget x [StorableType] x [CallArg]

Gaslnfo = ObjRef X MaxGas X BaseFee X Tip

Tx = (Call @ Publish) x Gaslnfo x Addr X Authenticator

Table 5: Transactions

Sui has two different transaction types: publishing a new Move
package, and calling a previously published Move package. A pub-
lish transaction contains a package—a set of modules that will be
published together as a single object, as well as the dependencies of
all the modules in this package (encoded as a list of object references
that must refer to already-published package objects). To execute a
publish transaction, the Sui runtime will run the Move bytecode
verifier on each package, link the package against its dependencies,
and run the module initializer of each module. Module initializ-
ers are useful for bootstrapping the initial state of an application
implemented by the package.

A call transaction’s most important arguments are object inputs.
Object arguments are either specified via an object reference (for
single-owner and shared immutable objects) or an object ID (for
shared mutable objects). An object reference consists of an object

and The MystenLabs Team

ID, an object version, and the hash of the object value. The Sui
runtime will resolve both object ID’s and object references to object
values stored in the global object pool. For object references, the
runtime will check the version of the reference against the version
of the object in the pool, as well as checking that the reference’s
hash matches the pool object. This ensures that the runtime’s view
of the object matches the transaction sender’s view of the object.

In addition, a call transaction accepts type arguments and pure
value arguments. Type arguments instantiate generic type parame-
ters of the entrypoint function to be invoked (e.g., if the entrypoint
function is send_coin<T>(c: Coin<T>, ...), the generic type pa-
rameter T could be instantiated with the type argument SUI to send
the Sui native token). Pure values can include primitive types and
vectors of primitive types, but not struct types.

The function to be invoked by the call is specified via an object
reference (which must refer to a package object), a name of a module
in that package, and a name of a function in that package. To execute
a call transaction, the Sui runtime will resolve the function, bind
the type, object, and value arguments to the function parameters,
and use the Move VM to execute the function.

Both call and publish transactions are subject to gas metering
and gas fees. The metering limit is expressed by a maximum gas
budget. The runtime will execute the transaction until the budget
is reached, and will abort with no effects (other than deducting fees
and reporting the abort code) if the budget is exhausted.

The fees are deducted from a gas object specified as an object
reference. This object must be a Sui native token (i.e., its type must
be Coin<SUT>). Sui uses EIP1559%-style fees: the protocol defines a
base fee (denominated in gas units per Sui token) that is algorith-
mically adjusted at epoch boundaries, and the transaction sender
can also include an optional tip (denominated in Sui tokens). Under
normal system load, transactions will be processed promptly even
with no tip. However, if the system is congested, transactions with
a larger tip will be prioritized. The total fee deduced from the gas
object is (GasUsed = BaseFee) + Tip.

3.6 Transaction Effects

Event = StructType X Struct

Create = Obj

Update = Obj

Wrap = ObjID x Version

Delete = ObjID X Version

ObjEffect = Create W Update ¥ Wrap & Delete
AbortCode = N x ModuleName

SuccessEffects = [ObjEffect] x [Event]
AbortEffects = AbortCode

TxEffects = SuccessEffects & AbortEffects

Table 6: Transaction Effects

Transaction execution generates transaction effects which are dif-
ferent in the case when execution of a transaction is successful
(SuccessEffects in Table 6) and when it is not (AbortEffects in
Table 6).

4https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

The Sui Smart Contracts Platform

Upon successful transaction execution, transaction effects in-
clude information about changes made to Sui’s global object pool
(including both updates to existing objects and freshly created ob-
jects) and events generated during transaction execution. Another
effect of successful transaction execution could be object removal
(i-e., deletion) from the global pool and also wrapping (i.e., embed-
ding) one object into another, which has a similar effect to removal
- a wrapped object disappears from the global pool and exists only
as a part of the object that wraps it. Since deleted and wrapped
objects are no longer accessible in the global pool, these effects are
represented by the ID and version of the object.

Events encode side effects of successful transaction execution
beyond updates to the global object pool. Structurally, an event
consists of a Move struct and its type. Events are intended to be
consumed by actors outside the blockchain, but cannot be read by
Move programs.

Transactions in Move have an all-or-nothing semantics - if ex-
ecution of a transaction aborts at some point (e.g., due to an un-
expected failure), even if some changes to objects had happened
(or some events had been generated) prior to this point, none of
these effects persist in an aborted transaction. Instead, an aborted
transaction effect includes a numeric abort code and the name of
a module where the transaction abort occurred. Gas fees are still
charged for aborted transactions.

4 THE SUI SYSTEM

In this section we describe Sui from a systems’ perspective, includ-
ing the mechanisms to ensure safety and liveness across authorities
despite Byzantine failures. We also explain the operation of clients,
including light clients that need some assurance about the system
state without validating its full state.

Brief background. At a systems level Sui is an evolution of the
FastPay [3] low-latency settlement system, extended to operate on
arbitrary objects through user-defined smart contracts, and with a
permissionless delegated proof of stake committee composition [2].
Basic asset management by object owners is based on a variant of
Byzantine consistent broadcast [6] that has lower latency and is
easier to scale across many machines as compared to traditional
implementations of Byzantine consensus [8, 11, 12].When full agree-
ment is required we use a high-throughput DAG-based consensus,
e.g. [9] to manage locks, while execution on different shared objects
is parallelized.

Protocol outline. Figure 1 illustrates the high-level interactions
between a client and Sui authorities to commit a transaction. We
describe them here briefly:

o A user with a private signing key creates and signs a user
transaction to mutate objects they own, or shared objects,
within Sui. Subsequently, user signature keys are not needed,
and the remaining of the process may be performed by the
user client, or a gateway on behalf of the user (denoted as
keyless operation in the diagram).

o The user transaction is sent to the Sui authorities, that each
check it for validity, and upon success sign it and return the

signed transaction to the client. The client collects the re-
sponses from a quorum of authorities to form a transaction
certificate.

o The transaction certificate is then sent back to all author-
ities, and if the transaction involves shared objects it is
also sent to a Byzantine agreement protocol operated by
the Sui authorities. Authorities check the certificate, and
in case shared objects are involved also wait for the agree-
ment protocol to sequence it in relation to other shared
object transactions, and then execute the transaction and
summarize its effects into a signed effects response.

e Once a quorum of authorities has executed the certificate its
effects are final (denoted as finality in the diagram). Clients
can collect a quorum of authority responses and create an
effects certificate and use it as a proof of the finality of the
transactions effects.

This section describes each of these operations in detail, as well as
operations to reconfigure and manage state across authorities.

4.1 System Model

Sui operates in a sequence of epochs denoted by e € {0, ...}. Each
epoch is managed by a committee C, = (Ve, Se(+)), where Ve is a
set of authorities with known public verification keys and network
end-points. The function S, (v) maps each authority v € V, to a
number of units of delegated stake. We assume that C, for each
epoch is signed by a quorum (see below) of authority stake at epoch
e—1. (Sect. 4.7 discusses the formation and management of commit-
tees). Within an epoch, some authorities are correct (they follow the
protocol faithfully and are live), while others are Byzantine (they de-
viate arbitrarily from the protocol). The security assumption is that
the set of honest authorities He C V, is assigned a quorum of stake
within the epoch, i.e. Xpcp, Se(h) > 2/3 X ,ev, Se(v) (and refer to
any set of authorities with over two-thirds stake as a quorum).

There exists at least one live and correct party that acts as a relay
for each certificate (see Sect. 4.3) between honest authorities. This
ensures liveness, and provides an eventual delivery property to the
Byzantine broadcast (see totality of reliable broadcast in [6]). Each
authority operates such a relay, either individually or through a col-
lective dissemination protocol. External entities, including Sui light
clients, replicas and services may also take on this role. The distinc-
tion between the passive authority core, and an internal or external
active relay component that is less reliable or trusted, ensures a
clear demarcation and minimization of the Trusted Computing
Base [15] on which Sui’s safety and liveness relies.

4.2 Authority & Replica Data Structures

Sui authorities rely on a number of data structures to represent state.
We define these structures based on the operations they support.
They all have a deterministic byte representation.

An Object (Obj) stores user smart contracts and data within
Sui. They are the Sui system-level encoding of the Move objects
introduced in Sect. 2. They support the following set of operations:

o ref(Obj) returns the reference (ObjRef) of the object, namely
a triplet (ObjID, Version, ObjDigest). ObjID is practically

Key Interaction to Process Transaction

Process

Certificate

Client Authorities Consensus
User P
Transaction o
Keyless Operation \ 4
Process
Transaction b
L E
[Collect](— %
I
L5
<O
. : [0 :
Transaction =g
Certificate |~ [ar o s
e Shared Objects only N
Vo

Finality

[Collect }{

Effects
Certificate

Figure 1: Outline of interactions to commit a transaction.

unique for all new objects created, and Version is an in-
creasing positive integer representing the object version as
it is being mutated.

e owner(Obj) returns the authenticator Auth of the owner of
the object. In the simplest case, Auth is an address, repre-
senting a public key that may use this object. More complex
authenticators are also available (see Sect. 4.4).

e read-only(Obj) returns true if the object is read-only. Read-
only objects may never be mutated, wrapped or deleted.
They may also be used by anyone, not just their owners.

o parent(Obj) returns the transaction digest (TxDigest) that
last mutated or created the object.

o contents(Obj) returns the object type Type and data Data
that can be used to check the validity of transactions and
carry the application-specific information of the object.

and The MystenLabs Team

The object reference (ObjRef) is used to index objects. It is also
used to authenticate objects since ObjDigest is a commitment to
their full contents.

A transaction (Tx) is a structure representing a state transition for
one or more objects. They support the following set of operations:

o digest(Tx) returns the TxDigest, which is a binding crypto-
graphic commitment to the transaction.

o epoch(Tx) returns the EpochID during which this transac-
tion may be executed.

o inputs(Tx) returns a sequence of object [ObjRef] the trans-
action needs to execute.

e payment(Tx) returns a reference to an ObjRef to be used
to pay for gas, as well as the maximum gas limit, and a
conversion rate between a unit of gas and the unit of value
in the gas payment object.

o wvalid(Tx, [Obj]) returns true if the transaction is valid, given
the requested input objects provided. Validity is discussed
in Sect. 4.4, and relates to the transactions being authorized
to act on the input objects, as well as sufficient gas being
available to cover the costs of its execution.

e exec(Tx, [Obj]) executes the transaction and returns a struc-
ture Effects representing its effects. A valid transaction ex-
ecution is infallible, and its output is deterministic.

A transaction is indexed by its TxDigest, which may also be used
to authenticate its full contents. All valid transactions (except the
special hard-coded genesis transaction) have at least one owned
input, namely the objects used to pay for gas.

A transaction effects (Effects) structure summarizes the outcome
of a transaction execution. It supports the following operations:

o digest(Effects) is a commitment EffDigest to the Effects
structure, that may be used to index or authenticate it.

o transaction(Effects) returns the TxDigest of the executed
transaction yielding the effects.

o dependencies(Effects) returns a sequence of dependencies
[TxDigest] that should be executed before the transaction
with these effects may execute.

o contents(Effects) returns a summary of the execution. Status
reports the outcome of the smart contract execution. The
lists Created, Mutated, Wrapped, Unwrapped and Deleted,
list the object references that underwent the respective op-
erations. And Events lists the events emitted by the execu-
tion.

A transaction certificate TxCert on a transaction contains the
transaction itself as well as the identifiers and signatures from a
quorum of authorities. Note that a certificate may not be unique, in
that the same logical certificate may be represented by a different set
of authorities forming a quorum. Additionally, a certificate might
not strictly be signed by exactly a 2/3 quorum, but possibly more
if more authorities are responsive. However, two different valid
certificates on the same transaction should be treated as represent-
ing semantically the same certificate. A partial certificate (TxSign)
contains the same information, but signatures from a set of author-
ities representing stake lower than the required quorum, usually
a single authority. The identifiers of signers are included in the
certificate (i.e., accountable signatures [?]) to identify authorities

The Sui Smart Contracts Platform

ready to process the certificate, or that may be used to download
past information required to process the certificate (see Sect. 4.8).

Similarly, an effects certificate EffCert on an effects structure
contains the effects structure itself, and signatures from authorities®
that represent a quorum for the epoch in which the transaction is
valid. The same caveats, about non-uniqueness and identity apply
as for transaction certificates. A partial effects certificate, usually
containing a single authority signature and the effects structure is
denoted as EffSign.

Persistent Stores. Each authority and replica maintains a set of
persistent stores. The stores implement persistent map seman-
tics and can be represented as a set of key-value pairs (denoted
map[key] — value), such that only one pair has a given key. Before
a pair is inserted a contains(key) call returns false, and get(key)
returns an error. After a pair is inserted contains(key) calls returns
true, and get(key) return the value. An authority maintains the
following persistent stores:

o The order lock map Lock,[ObjRef] — TxSignOption re-
cords the first valid transaction Tx seen and signed by the
authority for an owned object version ObjRef, or None if
the object version exists but no valid transaction using as an
input it has been seen. It may also record the first certificate
seen with this object as an input. This table, and its update
rules, represents the state of the distributed locks on objects
across Sui authorities, and ensures safety under concurrent
processing of transactions.

o The certificate map Ct,[TxDigest] — (TxCert, EffSign)
records all full certificates TxCert, which also includes Tx,
processed by the authority within their validity epoch,
along with their signed effects EffSign. They are indexed
by transaction digest TxDigest

e The object map Obj,[ObjRef] — Obj records all objects
Obj created by transactions included in certificates within
Ct, indexed by ObjRef. This store can be completely de-
rived by re-executing all certificates in Ct,. A secondary in-
dex is maintained that maps ObjID to the latest object with
this ID. This is the only information necessary to process
new transactions, and older versions are only maintained
to facilitate reads and audit.

o The synchronization map Sync,[ObjRef] — TxDigest in-
dexes all certificates within Ct, by the objects they create,
mutate or delete as tuples ObjRef. This structure can be
fully re-created by processing all certificates in Cty, and
is used to help client synchronize transactions affecting
objects they care about.

Authorities maintain all four structures, and also provide access
to local checkpoints of their certificate map to allow other authori-
ties and replicas to download their full set of processed certificates.
A replica does not process transactions but only certificates, and
re-executes them to update the other tables as authorities do. It also
maintains an order lock map to audit non-equivocation.

Note that if the signature algorithm permits it, authority signatures can be compressed,
but always using accountable signature aggregation, because tracking who signed is
important for gas profit distribution and other network health measurements.

An authority may be designed as a full replica maintaining all
four stores (and checkpoints) to facilitate reads and synchroniza-
tion, combined with a minimal authority core that only maintains
object locks and objects for the latest version of objects used to pro-
cess new transactions and certificates. This minimizes the Trusted
Computing Base relied upon for safety.

Only the order lock map requires strong key self-consistency,
namely a read on a key should always return whether a value or
None is present for a key that exists, and such a check should be
atomic with an update that sets a lock to a non-None value. This is
a weaker property than strong consistency across keys, and allows
for efficient sharding of the store for scaling. The other stores may
be eventually consistent without affecting safety.

4.3 Authority Base Operation

Process Transaction. Upon receiving a transaction Tx an authority
performs a number of checks:

(1) It ensures epoch(Tx) is the current epoch.

(2) Itensures all object references inputs(Tx) and the gas object
reference in payment(Tx) exist within Obj, and loads them
into [Obj]. For owned objects the exact reference should
be available; for read-only or shared objects the object ID
should exist.

(3) Ensures sufficient gas can be made available in the gas
object to cover the cost of executing the transaction.

(4) It checks valid(Tx, [Obj]) is true. This step ensures the au-
thentication information in the transaction allows access
to the owned objects.

(5) It checks that Lock,[ObjRef] for all owned inputs(Tx) ob-
jects exist, and it is either None or set to the same Tx,
and atomically sets it to TxSign. (We call these the ‘locks
checks’).

If any of the checks fail processing ends, and an error is returned.
However, it is safe for a partial update of Lock, to persist (although
our current implementation does not do partial updates, but atomic
updates of all locks).

If all checks are successful then the authority returns a signature
on the transaction, ie. a partial certificate TxSign. Processing an
order is idempotent upon success, and returns a partial certificate
(TxSign), or a full certificate (TxCert) if one is available.

Any party may collate a transaction and signatures (TxSign)
for a set of authorities forming a quorum for epoch e, to form a
transaction certificate TxCert.

Process Certificate. Upon receiving a certificate an authority
checks all validity conditions for the transaction, except those re-
lating to locks (the so-called ‘locks checks’). Instead it performs
the following checks: for each owned input object in inputs(Tx) it
checks that the lock exists, and that it is either None, set to any
TxSign, or set to a certificate for the same transaction as the cur-
rent certificate. If this modified locks check fails, the authority has
detected an unrecoverable Byzantine failure, halts normal opera-
tions, and starts a disaster recovery process. For shared objects (see
Sect. 4.4) authorities check that the locks have been set through
the certificate being sequenced in a consensus, to determine the

version of the share object to use. If so, the transaction may be
executed; otherwise it needs to wait for such sequencing first.

If the check succeeds, the authority adds the certificate to its
certificate map, along with the effects resulting from its execution,
ie. Cty [TxDigest] — (TxCert, EffSign); it updates the locks map to
record the certificate Lock, [ObjRef] — TxCert for all owned input
objects that have locks not set to a certificate. As soon as all objects
in Input(Tx) is inserted in Obj,, then all effects in EffSign are also
materialized by adding their ObjRef and contents to Obj,,. Finally
for all created or mutated in EffSign the synchronization map is
updated to map them to Tx.

Remarks. The logic for handling transactions and certificates leads
to a number of important properties:

e Causality & parallelism. The processing conditions for
both transactions and certificates ensure causal execution:
an authority only ‘votes’ by signing a transaction if it has
processed all certificates creating the objects the transaction
depends upon, both owned, shared and read-only. Similarly,
an authority only processes a certificate if all input objects
upon which it depends exist in its local objects map. This
imposes a causal execution order, but also enables transac-
tions not causally dependent on each other to be executed
in parallel on different cores or machines.

e Sign once, and safety. All owned input objects locks in
Locky[-] are set to the first transaction Tx that passes the
checks using them, and then the first certificate that uses
the object as an input. We call this locking the object to this
transaction, and there is no unlocking within an epoch. As a
result an authority only signs a single transaction per lock,
which is an essential component of consistent broadcast [6],
and thus the safety of Sui.

o Disaster recovery. An authority detecting two contradic-
tory certificates for the same lock, has proof of irrecover-
able Byzantine behaviour — namely proof that the quorum
honest authority assumption does not hold. The two contra-
dictory certificates are a fraud proof [1], that may be shared
with all authorities and replicas to trigger disaster recovery
processes. Authorities may also get other forms of proof of
unrecoverable byzantine behaviour such as >1/3 signatures
on effects (EffSign) that represent an incorrect execution
of a certificate. Or a certificate with input objects that do
not represent the correct outputs of previously processed
certificates. These also can be packaged as a fraud proof
and shared with all authorities and replicas. Note these are
distinct from proofs that a tolerable minority of authorities
(< 1/3 by stake) or object owners (any number) is byzan-
tine or equivocating, which can be tolerated without any
service interruption.

o Finality. Authorities return a certificate (TxCert) and the
signed effects (EffSign) for any read requests for an index
in Locky, Cty and Obj,, Sync,. A transaction is considered
final if over a quorum of authorities reports Tx as included
in their Ct, store. This means that an effects certificate
(EffCert) is a transferable proof of finality. However, a cer-
tificate using an object is also proof that all dependent

and The MystenLabs Team

certificates in its causal path are also final. Providing a cer-
tificate to any party, that may then submit it to a super
majority of authorities for processing also ensures finality
for the effects of the certificate. Note that finality is later
than fastpay [3] to ensure safety under re-configuration.
However, an authority can apply the effect of a transaction
upon seeing a certificate rather than waiting for a commit.

4.4 Owners, Authorization, and Shared Objects

Transaction validity (see Sect. 4.3) ensures a transaction is autho-
rized to include all specified input objects in a transaction. This
check depends on the nature of the object, as well as the owner
field.

Read-only objects cannot be mutated or deleted, and can be used
in transactions concurrently and by all users. Move modules for
example are read-only. Such objects do have an owner that might
be used as part of the smart contract, but that does not affect au-
thorization to use them. They can be included in any transaction.

Owned objects have an owner field. The owner can be set to
an address representing a public key. In that case, a transaction is
authorized to use the object, and mutate it, if it is signed by that
address. A transaction is signed by a single address, and therefore
can use one or more objects owned by that address. However, a
single transaction cannot use objects owned by more than one
address. The owner of an object, called a child object, can be set to
the ObjID of another object, called the parent object. In that case the
child object may only be used if the parent object is included in the
transaction, and the transaction is authorized to use the object. This
facility may be used by contracts to construct efficient collections
and other complex data structures.

Shared objects are mutable, but do not have a specific owner. They
can instead be included in transactions by different parties, and
do not require any authorization. Instead they perform their own
authorization logic. Such objects, by virtue of having to support
multiple writers while ensuring safety and liveness, do require a
full agreement protocol to be used safely. Therefore they require
additional logic before execution. Authorities process transactions
as specified in Sect. 4.3 for owned objects and read-only objects
to manage their locks. However, authorities do not rely on con-
sistent broadcast to manage the locks of shared objects. Instead,
the creators of transactions that involve shared objects insert the
certificate on the transaction into a high-throughput consensus
system, e.g. [9]. All authorities observe a consistent sequence of
such certificates, and assign the version of shared objects used by
each transaction according to this sequence. Then execution can
proceed and is guaranteed to be consistent across all authorities. Au-
thorities include the version of shared objects used in a transaction
execution within the Effects certificate.

The above rules ensure that execution for transactions involving
read-only and owned objects requires only consistent broadcast
and a single certificate to proceed; and Byzantine agreement is only
required for transactions involving shared objects. Smart contract
authors can therefore design their types and their operations to
optimize transfers and other operations on objects of a single user
to have lower latency, while enjoying the flexibility of using shared

The Sui Smart Contracts Platform

objects to implement logic that needs to be accessed by multiple
users.

4.5 Clients

Full Clients & Replicas. Replicas, also sometimes called full clients,
do not validate new transactions, but maintain a consistent copy of
the valid state of the system for the purposes of audit, as well as to
construct transactions or operate services incl. read infrastructures
for light client queries.

Light Clients. Both object references and transactions contain
information that allows the authentication of the full causal chain
of transactions that leading up to their creation or execution. Specif-
ically, an object reference (ObjRef) contains an ObjDigest that is an
authenticator for the full state of the object, including the facility to
get parent(Obj), namely the TxDigest that created the object. Simi-
larly, a TxDigest authenticates a transaction, including the facility
to extract through inputs(Tx) the object references of the input
objects. Therefore the set of objects and certificates form a bipartite
graph that is self-authenticating. Furthermore, effects structures
are also signed, and may be collated into effects certificates that
directly certify the results of transaction executions.

These facilities may be used to support light clients that can per-
form high-integrity reads into the state of Sui, without maintaining
a full replica node. Specifically an authority or full node may pro-
vide a succinct bundle of evidence, comprising a certificate TxCert
on a transaction Tx and the input objects [Obj] corresponding to
inputs(Tx) to convince a light client that a transition can take place
within Sui. A light client may then submit this certificate, or check
whether it has been seen by a quorum or sample of authorities
to ensure finality. Or it may craft a transaction using the objects
resulting from the execution, and observe whether it is successful.

More directly, a service may provide an effects certificate to a
client to convince them of the existence and finality of a transi-
tion within Sui, with no further action or interaction within the
system. If a checkpoint of finalized certificates is available, at an
epoch boundary or otherwise, a bundle of evidence including the
input objects and certificate, alongside a proof of inclusion of the
certificate in the checkpoint is also a proof of finality.

Authorities may use a periodic checkpointing mechanism to
create collective checkpoints of finalized transactions, as well as
the state of Sui over time. A certificate with a quorum of stake
over a checkpoint can be used by light clients to efficiently validate
the recent state of objects and emitted events. A check pointing
mechanism is necessary for committee reconfiguration between
epochs. More frequent checkpoints are useful to light clients, and
may also be used by authorities to compress their internal data
structures as well as synchronize their state with other authorities
more efficiently.

4.6 Bridges

Native support for light clients and shared objects managed by
Byzantine agreement allows Sui to support two-way bridges to
other blockchains [13]. The trust assumption of such bridges reflect
the trust assumptions of Sui and the other blockchain, and do not

have to rely on trusted oracles or hardware if the other blockchain
also supports light clients [7].

Bridges are used to import an asset issued on another blockchain,
to represent it and use it as a wrapped asset within the Sui system.
Eventually, the wrapped asset can be unlocked and transferred
back to a user on the native blockchain. Bridges can also allow
assets issued on Sui to be locked, and used as wrapped assets on
other blockchains. Eventually, the wrapped object on the other
system can be destroyed, and the object on Sui updated to reflect
any changes of state or ownership, and unlocked.

The semantics of bridged assets are of some importance to en-
sure wrapped assets are useful. Fungible assets bridged across
blockchains can provide a richer wrapped representation that al-
lows them to be divisible and transferable when wrapped. Non-
fungible assets are not divisible, but only transferable. They may
also support other operations that mutates their state in a con-
trolled manner when wrapped, which may necessitate custom
smart contract logic to be executed when they are bridged back
and unwrapped. Sui is flexible and allows smart contract authors
to define such experiences, since bridges are just smart contracts
implemented in Move rather than native Sui concepts — and there-
fore can be extended using the composability and safety guarantees
Move provides.

4.7 Committee Reconfiguration

Reconfiguration occurs between epochs when a committee C, is
replaced by a committee C./, where e’ = e + 1. Reconfiguration
safety ensures that if a transaction Tx was committed at e or before,
no conflicting transaction can be committed after e. Liveness en-
sures that if Tx was committed at or before e, then it must also be
committed after e.

We leverage the Sui smart contract system to perform a lot
of the work necessary for reconfiguration. Within Sui a system
smart contract allows users to lock and delegate stake to candidate
authorities. During an epoch, owners of coins are free to delegate
by locking tokens, undelegate by unlocking tokens or change their
delegation to one or more authorities.

Once a quorum of stake for epoch e vote to end the epoch, author-
ities exchange information to commit to a checkpoint, determine
the next committee, and change the epoch. First, authorities run
a check pointing protocol, with the help of an agreement proto-
col [9], to agree on a certified checkpoint for the end of epoch e.
The checkpoint contains the union of all transactions, and poten-
tially resulting objects, that have been processed by a quorum of
authorities. As a result if a transaction has been processed by a
quorum of authorities, then at least one honest authorities that
processed it will have its processed transactions included in the
end-of-epoch checkpoint, ensuring the transaction and its effects
are durable across epochs. Furthermore, such a certified checkpoint
guarantees that all transactions are available to honest authorities
of epoch e.

The stake delegation at the end-of-epoch checkpoint is then
used to determine the new set of authorities for epoch e + 1. Both
a quorum of the old authorities stake and a quorum of the new
authority stake signs the new committee C,/, and checkpoint at
which the new epoch commences. Once both set of signatures are

available the new set of authorities start processing transactions for
the new epoch, and old authorities may delete their epoch signing
keys.

Recovery. It is possible due to client error or client equivocation
for an owned object to become ‘locked’ within an epoch, preventing
any transaction concerning it from being certified (or finalized). For
example, a client signing two different transactions using the same
owned object version, with half of authorities signing each, would
be unable to form a certificate requiring a quorum of signatures
on any of the two certificates. Recovery ensures that once epochs
change such objects are again in a state that allows them to be used
in transactions. Since, no certificate can be formed, the original
object is available at the start of the next epoch to be operated on.
Since transactions contain an epoch number, the old equivocating
transactions will not lock the object again, giving its owner a chance
to use it.

Rewards & cryptoeconomics. Sui has a native token SUI, with
a fixed supply. SUI is used to pay for gas, and is also be used as
delegated stake on authorities within an epoch. The voting power
of authorities within this epoch is a function of this delegated stake.
At the end of the epoch fees collected through all transactions pro-
cessed are distributed to authorities according to their contribution
to the operation of Sui, and in turn they share some of the fees as
rewards to addresses that delegated stake to them. We postpone a
full description of the token economics of Sui to a dedicated paper.

4.8 Authority & Replica Updating

Client-driven. Due to client failures or non-byzantine authority
failures, some authorities may not have processed all certificates. As
a result causally related transactions depending on missing objects
generated by these certificates would be rejected. However, a client
can always update an honest authority to the point where it is able
to process a correct transaction. It may do this using its own store
of past certificates, or using one or more other honest authorities
as a source for past certificates.

Given a certificate ¢ and a Ct,, store that includes ¢ and its causal
history, a client can update an honest authority v’ to the point
where ¢ would also be applied. This involves finding the smallest
set of certificates not in v’ such that when applied the Objects in v’
include all inputs of c. Updating a lagging authority B using a store
Ct, including the certificate TxCert involves:

o The client maintains a list of certificates to sync, initially
set to contain just TxCert.

e The client considers the last TxCert requiring sync. It ex-
tracts the Tx within the TxCert and derives all its input
objects (using Input(Tx)).

e For each input object it checks whether the Tx that gener-
ated or mutated last (using the Sync, index on Ct;) has a
certificate within B, otherwise its certificate is read from
Cty and added to the list of certificates to sync.

e If no more certificates can be added to the list (because no
more inputs are missing from B) the certificate list is sorted
in a causal order and submitted to B.

and The MystenLabs Team

The algorithm above also applies to updating an object to a specific
version to enable a new transaction. In this case the certificate for
the Tx that generated the object version, found in Sync,[ObjRef],
is submitted to the lagging authority. Once it is executed on B the
object at the correct version will become available to use.

A client performing this operation is called a relayer. There can
be multiple relayers operating independently and concurrently.
They are untrusted in terms of integrity, and their operation is
keyless. Besides clients, authorities can run the relayer logic to
update each other, and replicas operating services can also act as
relayers to update lagging authorities.

Bulk. Authorities provide facilities for a follower to receive updates
when they process a certificate. This allows replicas to maintain
an up-to-date view of an authorty’s state. Furthermore, authori-
ties may use a push-pull gossip network to update each other of
the latest processed transaction in the short term and to reduce
the need for relayers to perform this function. In the longer term
lagging authorities may use periodic state commitments, at epoch
boundaries or more frequently, to ensure they have processed a
complete set of certificates up to certain check points.

5 SCALING AND LATENCY

The Sui system allows scaling though authorities devoting more
resources, namely CPUs, memory, network and storage within a ma-
chine or over multiple machines, to the processing of transactions.
More resources lead to an increased ability to process transactions,
leading to increased fees income to fund these resources. More
resources also results in lower latency, as operations are performed
without waiting for necessary resources to become available.

Throughput. To ensure that more resources result in increased
capacity quasi-linearly, the Sui design aggressively reduces bottle-
necks and points of synchronization requiring global locks within
authorities. Processing transactions is cleanly separated into two
phases, namely (1) ensuring the transaction has exclusive access
to the owned or shared objects at a specific version, and (2) then
subsequently executing the transaction and committing its effects.

Phase (1) requires a transaction acquiring distributed locks at the
granularity of objects. For owned objects this is performed trough a
reliable broadcast primitive, that requires no global synchronization
within the authority, and therefore can be scaled through sharding
the management of locks across multiple machines by ObjID. For
transactions involving shared objects sequencing is required using
a consensus protocol, which does impose a global order on these
transactions and has the potential to be a bottleneck. However,
recent advances on engineering high-throughput consensus pro-
tocols [9] demonstrate that sequential execution is the bottleneck
in state machine replication, not sequencing. In Sui, sequencing
is only used to determine a version for the input shared object,
namely incrementing an object version number and associating
it with the transaction digest, rather than performing sequential
execution.

Phase (2) takes place when the version of all input objects is
known to an authority (and safely agreed across authorities) and
involves execution of the Move transaction and commitment of its
effects. Once the version of input objects is known, execution can

The Sui Smart Contracts Platform

take place completely in parallel. Move virtual machines on mul-
tiple cores or physical machines read the versioned input objects,
execute, and write the resulting objects from and to stores. The
consistency requirements on stores for objects and transactions
(besides the order lock map) are very loose, allowing scalable dis-
tributed key-value stores to be used internally by each authority.
Execution is idempotent, making even crashes or hardware failures
on components handling execution easy to recover from.

As a result, execution for transactions that are not causally re-
lated to each other can proceed in parallel. Smart contract design-
ers may therefore design the data model of objects and operations
within their contracts to take advantage of this parallelism.

Check-pointing and state commitments are computed off the
critical transaction processing path to not block the handling of
fresh transactions. These involve read operations on committed
data rather than requiring computation and agreement before a
transaction reaches finality. Therefore they do not affect the latency
or throughput of processing new transactions, and can themselves
be distributed across available resources.

Reads can benefit from very aggressive, and scalable caching.
Authorities sign and make available all data that light clients require
for reads, which may be served by distributed stores as static data.
Certificates act as roots of trust for their full causal history of
transactions and objects. State commitments further allow for the
whole system to have regular global roots of trust for all state and
transactions processed, at least every epoch or more frequently.

Latency. Smart contract designers are given the flexibility to con-
trol the latency of operations they define, depending on whether
they involve owned or shared objects. Owned objects rely on a reli-
able broadcast before execution and commit, which requires two
round trips to a quorum of authorities to reach finality. Operations
involving shared objects, on the other hand, require a a consistent
broadcast to create a certificate, and then be processed within a
consensus protocol, leading to increased latency (4 to 8 round trips
to quorums as of [9]).

REFERENCES

[1] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. 2021.
Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients.
In Financial Cryptography and Data Security - 25th International Conference, FC
2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II (Lecture Notes
in Computer Science, Vol. 12675), Nikita Borisov and Claudia Diaz (Eds.). Springer,
279-298.

[2] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-
Corry, Sarah Meiklejohn, and George Danezis. 2019. SoK: Consensus in the Age
of Blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019. ACM, 183-198.

[3] Mathieu Baudet, George Danezis, and Alberto Sonnino. 2020. FastPay: High-
Performance Byzantine Fault Tolerant Settlement. In AFT "20: 2nd ACM Confer-
ence on Advances in Financial Technologies, New York, NY, USA, October 21-23,
2020. ACM, 163-177.

[4] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd
Nowacki, Alistair Pott, Shaz Qadeer, Ra in, Dario Russi, Stephane Sezer, Tim Za-
kian, and Runtian Zhou. 2019. Move: A Language With Programmable Resources.
https://developers.libra.org/docs/move-paper.

[5] Sam Blackshear, David L. Dill, Shaz Qadeer, Clark W. Barrett, John C. Mitchell,
Oded Padon, and Yoni Zohar. 2020. Resources: A Safe Language Abstraction for
Money. CoRR abs/2004.05106 (2020). arXiv:2004.05106 https://arxiv.org/abs/
2004.05106

[6] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.

[7] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021.
SoK: Blockchain Light Clients. IACR Cryptol. ePrint Arch. (2021), 1657.

—_

8]

—_

9]

[10

[11

[12]

[13

[14

=
&

[16

Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo
Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, An-
drei Tonkikh, and Athanasios Xygkis. 2020. Online Payments by Merely Broad-
casting Messages. In 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020. IEEE,
26-38.

George Danezis, Eleftherios Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2021. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT
Consensus. CoRR abs/2105.11827 (2021).

David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and
Jingyi Emma Zhong. 2021. Fast and Reliable Formal Verification of Smart Con-
tracts with the Move Prover. CoRR abs/2110.08362 (2021). arXiv:2110.08362
https://arxiv.org/abs/2110.08362

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. 2018. AT2: Asynchronous Trustworthy Transfers. CoRR
abs/1812.10844 (2018).

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. 2019. The Consensus Number of a Cryptocurrency. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, Peter Robinson and
Faith Ellen (Eds.). ACM, 307-316.

Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. SoK:
Validating Bridges as a Scaling Solution for Blockchains. IACR Cryptol. ePrint
Arch. (2021), 1589.

Marco Patrignani and Sam Blackshear. 2021. Robust Safety for Move. CoRR
abs/2110.05043 (2021). arXiv:2110.05043 https://arxiv.org/abs/2110.05043
Jerome H Saltzer and Michael D Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278-1308.

Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp, Sam
Blackshear, Junkil Park, Yoni Zohar, Clark W. Barrett, and David L. Dill. 2020.
The Move Prover. In Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and Chao Wang (Eds.).
Springer, 137-150. https://doi.org/10.1007/978-3-030-53288-8_7

https://developers.libra.org/docs/move-paper
https://arxiv.org/abs/2004.05106
https://arxiv.org/abs/2004.05106
https://arxiv.org/abs/2004.05106
https://arxiv.org/abs/2110.08362
https://arxiv.org/abs/2110.08362
https://arxiv.org/abs/2110.05043
https://arxiv.org/abs/2110.05043
https://doi.org/10.1007/978-3-030-53288-8_7

	1 Introduction
	2 Sui smart contract programming
	2.1 Overview

	3 The Sui programming model
	3.1 Modules
	3.2 Types and Abilities
	3.3 Objects and Ownership
	3.4 Addresses and Authenticators
	3.5 Transactions
	3.6 Transaction Effects

	4 The Sui system
	4.1 System Model
	4.2 Authority & Replica Data Structures
	4.3 Authority Base Operation
	4.4 Owners, Authorization, and Shared Objects
	4.5 Clients
	4.6 Bridges
	4.7 Committee Reconfiguration
	4.8 Authority & Replica Updating

	5 Scaling and Latency
	References

